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Abstract. We propose a stable nonparametric method for constructing an option pricing model
of exponential Lévy type, consistent with a given data set of option prices. After demonstrating the
ill-posedness of the usual and least squares version of this inverse problem, we suggest to regularize
the calibration problem by reformulating it as the problem of finding an exponential Lévy model that
minimizes the sum of the pricing error and the relative entropy with respect to a prior exponential
Lévy model. We prove the existence of solutions for the regularized problem and show that it yields
solutions which are continuous with respect to the data, stable with respect to the choice of prior,
and which converge to the minimum entropy least squares solution of the initial problem when the
noise level in the data vanishes.
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1. Introduction. The specification of an arbitrage-free option pricing model on
a time horizon T, involves the choice of a risk-neutral measure [25]: a probability
measure @ on the set Q of possible trajectories {S;};cpo,7..) of the underlying asset
such that the discounted asset price e~"*S; is a martingale (where r is the discount
rate). Such a probability measure @ then specifies a pricing rule which attributes to an
option with terminal payoff Hy at T the value C(Hy) = e "T EQ[Hy]. For example,
the value under the pricing rule @ of a call option with strike K and maturity T
is given by e "TEQ[(St — K)*]. Given that data sets of option prices have become
increasingly available, a common approach for selecting the pricing model is to choose,
given option prices (C(H?));c; with maturities T; payoffs H', a risk-neutral measure
Q compatible with the observed market prices, i.e., such that C(H?) = e~"1' E?[H"].
This inverse problem of determining a pricing model ) verifying these constraints is
known as the “model calibration” problem. The number of observed options can be
large (~ 100-200 for index options) and the Black—Scholes model has to be replaced
with models with richer structure such as nonlinear diffusion models [18] or models
with jumps [13]. The inverse problem is ill-posed in these settings [14, 33] and various
methods have been proposed for solving it in a stable manner, mostly in the framework
of diffusion models [1, 4, 5, 6, 9, 16, 18, 26, 28, 32, 33].

Given the ill-posed nature of the inverse problem, an extra criterion must be
used to select a model compatible with observed option prices. The use of relative
entropy as a model selection criterion has solid theoretical foundations [17] and has
been investigated by many authors in the context of option pricing.
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The notion of minimal entropy martingale measure (MEMM)—the pricing mea-
sure () that minimizes the relative entropy with respect to a reference probability
P—has been investigated by many authors [22, 19, 29]. However, option prices com-
puted using the MEMM are in general not consistent with the market-quoted prices
of traded European options and can lead to arbitrage opportunities with respect to
market-traded options.

The notion of minimal entropy distribution consistent with observed market
prices was introduced in a static framework in [4, 3, 35]; given prices of call options
{Cum (T}, K;) }ier and a prior distribution P on scenarios, it is obtained by minimizing
relative entropy over all probability measures @ ~ P such that

(1.1) Cu(Ty, K;) = E9le T (Sy, — K;)T] fori e I.

This approach is based on relative entropy minimization under constraints [17] and
yields a computable result. It was extended to the case of stochastic processes by the
weighted Monte Carlo method of Avellaneda et al. [5], but the martingale property is
not taken into account since it would yield an infinite number of constraints [30]. As
a result, derivative prices computed with the weighted Monte Carlo algorithm may
contain arbitrage opportunities, especially when applied to forward start contracts.

Goll and Riischendorf [24] consider the notion of consistent (or calibrated) MEMM
(CMEMM), defined as the solution of

1@Q'[P) = win 1(@QP)

where the minimum is taken over all martingale measures @) ~ P verifying (1.1).
While this notion seems to conciliate the advantages of the MEMM and Avellaneda’s
entropy minimization under constraints, no algorithm is proposed in [24] to compute
the CMEMM. In fact, the notion of CMEMM does not in general preserve the struc-
ture of the prior—e.g., the Markov property—and it may be difficult to represent.!

We also note that such model selection methods based on relative entropy are
not convenient when dealing with one-dimensional diffusion models since as soon as
the model has a diffusion coefficient different from the prior their measures become
singular and the relative entropy is infinite.

In this paper we show that the shortcomings of the above approaches can be
overcome by enlarging the class of models to include processes with jumps and using
relative entropy as a regularization criterion rather than a selection criterion. On
one hand, introducing jumps in the prior model allows us to obtain a large class of
equivalent martingale measures which also have finite relative entropy with respect to
the prior, avoiding the singularity which arises in diffusion models. On the other hand,
by restricting the class of pricing models to exponential Lévy models—where the risk-
neutral dynamics of the logarithm of the stock price is given by a Lévy process—we
are able to go beyond a simple existence result and obtain a computable alternative to
the CMEMM. Also, unlike the weighted Monte Carlo approach, our approach yields
as a solution a continuous-time price process whose discounted value is a martingale.
Finally, the use of regularization yields a stable solution to the inverse problem for
which a computational approach is possible [14].

The relation between the option prices and the parameters of the process (its Lévy
measure) being nonlinear, we face a nonlinear, infinite-dimensional inverse problem.

Hn particular, if X is a Lévy process under the prior P, it will in general no longer be a Lévy
process under a consistent MEMM.



RETRIEVING LEVY PROCESSES FROM OPTION PRICES 3

After demonstrating the ill-posedness of the usual and least squares version of this
inverse problem, we show that it can be regularized by using as a penalization term
the relative entropy with respect to a prior exponential Lévy model. We show that
our approach yields solutions which are continuous with respect to the data, stable
with respect to the choice of prior, and which converge to the minimum entropy least
squares solution of the initial problem.

Unlike linear inverse problems for which general results on regularization methods
and their convergence properties are available [20], nonlinear inverse problems have
been explored less systematically. Our study is an example of rigorous analysis of
regularization using entropy for a nonlinear, infinite-dimensional inverse problem.
Previous results on regularization using entropy have been obtained in a Banach
space setting [21] by mapping the problem to a Tikhonov regularization problem.
Using probabilistic methods, we are able to use a direct approach and extend these
results to the spaces of probability measures considered here.

The paper is structured as follows. Section 2 recalls basic facts about Lévy pro-
cesses and exponential Lévy models. In section 3 we formulate the calibration problem
as that of finding a martingale measure @, consistent with market-quoted prices of
traded options, under which the logarithm of the stock price process remains a Lévy
process. We show that both this problem and its least squares version are ill-posed:
a solution need not exist and, when it exists, may be unstable with respect to pertur-
bations in the data. Section 4 discusses relative entropy in the case of Lévy processes
and its use as a criterion for selecting solutions, and introduces the notion of minimum
entropy least squares solution. In section 5 we formulate the regularized version of the
calibration problem, show that it always admits a solution depending continuously
on market data, discuss conditions for the solutions to be equivalent martingale mea-
sures, and formulate conditions under which they converge to the minimum entropy
least squares solutions as the noise level in the data goes to zero.

In section 6 we show that the solutions of the regularized calibration problem
are stable with respect to small perturbations of the prior measure. The solutions
of the regularized calibration problem with any prior measure can thus be approxi-
mated (in the weak sense) by the solutions of regularized problems with discretized
priors, which has implications for the discretization and the numerical solution of the
regularized calibration problem, further discussed in [14]. In the appendix we discuss
some properties of relative entropy in the case of Lévy processes.

2. Definitions and notation. Consider a time horizon T, < oo and denote by
Q) the space of real-valued cadlag functions on [0, Tw], equipped with the Skorokhod
topology [27]. The time horizon T, must be chosen finite since we will work with the
class of Lévy processes absolutely continuous with respect to a given Lévy process, and
on an infinite time interval this class is trivial since in this case absolute continuity
of Lévy processes is equivalent to identity in law [27, Theorem IV.4.39]. Unless
otherwise mentioned, X is the coordinate process: for every w € Q, X;(w) := w(t). F
is the smallest o-field, for which the mappings w € Q +— w(s) are measurable for all
5 € [0,Tw] and for any ¢ € [0, Tw], and (F) is the natural filtration of (X¢)epo,7.]-
Weak convergence of measures will be denoted by =.

Lévy processes. A Lévy process {X;}1>0 on (2, F, P) is a stochastic process with
stationary independent increments satisfying Xy = 0. The characteristic function of
X; has the following form, called the Lévy—Khinchin representation [34]:

o0
(2.1) E[e"*Xt] = (®) with ¢(2) = _%AZQ +ivz + / (e — 1 —izh(z))v(dz),

— 00
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where A > 0 is the unit variance of the Brownian motion part of the Lévy process,
v € R, v is a positive measure on R verifying v({0}) = 0 and

o0
/ (2 A 1)v(dz) < oo,
— 00
and h is the truncation function: any bounded measurable function R — R such that
h(x) = x on a neighborhood of zero. The most common choice of truncation function
is h(x) = x1)3<1 but sometimes in this paper we will need h to be continuous. The
triplet (A, v, ) is called the characteristic triplet of X with respect to the truncation
function h.

Model setup. We consider exponential Lévy models, where the stock price S; is
modeled, under a risk-neutral measure @ [25], as the exponential of a Lévy process:

(2.2) Sy = Spe"t T,

Xt

where 7 is the interest rate. Since @ is a risk-neutral probability measure, et must

be a martingale. It follows from (2.1) that this is the case if and only if

A (oo}

(2.3) — 4+ —|—/ (e —1—h(z))v(dz) = 0.
2 — 00

Under @ call option prices can be evaluated as discounted expectations of terminal

payoffs:

(2.4) CUT,K) = e "TE[(Sr — K)T] = e "TEQ[(Spe™ T X7 — K)*].

Notation. In what follows P(€2) denotes the set of probability measures (stochas-
tic processes) on (€2, F), £ denotes the set of all probability measures P € P(2) under
which the coordinate process X is a Lévy process, and M stands for the set of all
probability measures P € P(2), under which exp(X;) is a martingale. Ly 4 is the set
of all probability measures P € L corresponding to arbitrage-free exponential Lévy
models, that is, to Lévy processes that are not almost surely increasing nor almost
surely decreasing. Furthermore, for B > 0 we define

Lh={PeLl, PIAX,<BVte[0,To]]=1},

the set of Lévy processes with jumps bounded from above by B.

The following lemma shows the usefulness of the above definitions.

LEMMA 2.1. The set M N Eg is weakly closed for every B > 0.

Proof. Let {Q,}3, C M N L}, with characteristic triplets (Ap, vy, v,) with
respect to a continuous truncation function h and let @) be a Lévy process with
characteristic triplet (A, v,~) with respect to h, such that @, = @. Note that the
limit in distribution of a sequence of Lévy processes is necessarily a Lévy process; due
to convergence of characteristic functions, the limiting process must have stationary
and independent increments. Define a function f by

0, r < B,
flx):=1< 1, x> 2B,
=B B<z<2B.

By Corollary VIL3.6 in [27], [* f(z)v(dz) = lim,—.o [ f(2)vn(dz) = 0, which
implies that the jumps of () are bounded by B. Define

_ [ e —1—h()- k@), «<B,
o ={ N N, T1
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Then, once again by Corollary VII.3.6 in [27] and because @,, satisfies the martingale
condition (2.3) for every n,

00 A > h2(z)v(dz i
v A [ 1wt =gy T
A, < K2 (z)vp(dx 0
= lim_ {vn+ +f‘°°2 ()on )+/oog(w)vn(dw)} =0,

which shows that @ also satisfies the condition (2.3). O

3. The calibration problem and its least squares formulation. Suppose
first that the market data C'y; are consistent with the class of exponential Lévy models.
This is, for example, the case when the market pricing rule is an exponential Lévy
model but can hold more generally since many models may give the same prices for a
given set of European options. For instance one can construct, using Dupire’s formula
[18], a diffusion model that gives the same prices, for a set of European options, as a
given exp-Lévy model [12]. Using the notation defined in the preceding section, the
calibration problem assumes the following form.

PROBLEM 1 (calibration with equality constraints). Given prices of call options
{Cm (T}, K;) Yier, find an arbitrage-free exponential Lévy model Q* € MNL such that

(3.1) Viel, CO9(T;,K;)=Cy(Ti,K;).

When the market data are not consistent with the class of exponential Lévy
models, the exact calibration problem may not have a solution. In this case one may
consider an approximate solution: instead of reproducing the market option prices
exactly, one may look for a Lévy triplet which reproduces them in a least squares
sense. Let w be a probability measure on [0,T] x [0,00) (the weighting measure,
determining the relative importance of different data points). An option data set is
defined as a mapping C : [0,T] X [0,00) — [0,00) and the data sets that coincide
w-almost everywhere are considered identical. One can introduce a norm on option
data sets via

(3.2) IC|12 = / C(T, K)*w(dT x dK).
[0,T]%x[0,00)

The quadratic pricing error in model @ is then given by ||Cys — C?|2,. If the number
of constraints is finite, then w = Eivzl w;d (T, i,y (AT x dK) (with, e.g., N constraints),
where {w; }1<i;<n are positive weights that sum up to one. Therefore, in this case

N
(3.3) Iy = COU% =) wi(Cu (T, K;) — COUTy, K)).

i=1

The following lemma establishes some useful properties of the pricing error func-
tional.

LEMMA 3.1. The pricing error functional Q — ||Car—C@||2, is uniformly bounded
and weakly continuous on M N L.

Proof. From (2.4), C2(T,K) < Sp. Absence of arbitrage in the market implies
that the market option prices satisfy the same condition. Therefore, (Cy (T, K) —
C?(T,K))? < S2 and, since w is a probability measure, ||Cys — C%|2, < S2.
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Let {@Qn}tn>1 CMNLand Q € MNL be such that Q,, = Q. For all T, K,
lim CO(T,K)=e"T lim EQn[(Spe X — K) 7]
= e lim B9 [Soe" T — K] 4 ¢ 7T lim B9 [(K — Soe’THAT) ]
=Sy — Ke "' + e "TEQ[(K — Spe" ™)+ = 09T, K).

Therefore, by the dominated convergence theorem, ||Cps—C9 |2 — ||Cps—C@|2. O
The calibration problem now takes the following form.
PROBLEM 2 (least squares calibration problem). Given prices Cyr of call options,
find Q* € M N L such that

(3.4) Oy — C9 Oy — C912.

2 _
w =

inf
QeMNL
In what follows, any such @Q* will be called a least squares solution and the set of all
least squares solutions will be denoted by LSS(Ciy).

Several authors [2, 8] have used least squares formulations similar to (3.4) for
calibrating parametric models without taking into account that the least squares
calibration problem is ill-posed in several ways:

Lack of identification. Option prices are only available for a finite number of
strikes (typically between 10 and 100) and knowing the prices of a finite number of
options is not sufficient to reconstruct the Lévy process. This problem is discussed in
detail in [14, 36].

Absence of solution. In some cases even the least squares problem may not admit
a solution, as shown by the following (artificial) example.

Example 3.1. Suppose that Sy = 1, there are no interest rates or dividends, and
the (equally weighted) market data consist of the following two observations:

(3.5) Cu(T=1,K=1)=1-¢* and Cy(T=1,K=¢)=0,

with some A > 0. It is easy to see that these prices are, for example, compatible with
the (martingale) asset price process S; = e’\tltST17 where 71 is the time of the first
jump of a Poisson process with intensity A. We will show that if the market data are
given by (3.5), the calibration problem (3.4) does not admit a solution.

Equation (2.4) implies that in every risk-neutral model Q, for fixed T', C?(T, K)
is a convex function of K and that C?(T, K = 0) = 1. The only convex function
which satisfies this equality and passes through the market data points (3.5) is given
by C(T = 1,K) = (1 — Ke~*)*. Therefore, in every arbitrage-free model that is an
exact solution of the calibration problem with market data (3.5), for every K > 0,
P[S; < K] = e M <. Since in an exponential Lévy model P[S; > 0] = 1, there is
no risk-neutral exponential Lévy model for which ||Cy — C®||,, = 0.

On the other hand, infge pmnz [|Car —C@|2, = 0. Indeed, let {N;};>0 be a Poisson
process with intensity A. Then for every n, the process

(3.6) X' i=—nNy+ M(1l—e™)
belongs to M N L and

n = At)F —n +
lim E[(eX — K)*] = lim Ze*”u (e*”k“t“*e )—K> = (1- Ke )t
k=0

We have shown that infgemnz [|[Car — C?||2 = 0 and that for no Lévy process Q €
MnNL, |Cy — C?||? = 0. Thus the calibration problem (3.4) does not admit a
solution.
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Lack of continuity of solutions with respect to market data. Market option prices
are typically defined up to a bid-ask spread and the prices used for calibration may
therefore be subject to perturbations of this order. If the solution of the calibration
problem is not continuous with respect to market data, these small errors may dra-
matically alter the result of calibration, rendering it useless. In addition, in absence of
continuity small daily changes in prices could lead to large variations of calibrated pa-
rameters and of quantities computed using these parameters, such as prices of exotic
options.

When the calibration problem has more than one solution, care should be taken
in defining continuity. In what follows, we will use the following definition [7, 20].

DEFINITION 3.2 (continuity with respect to data). The solutions of a calibration
problem are said to depend continuously on input data at the point Cys if for every
sequence of data sets {Cy}n>0 such that ||CYy — Chrlw — 0; if, for every n, Q,

is a solution of the calibration problem with data C};, then
1. {Qn}n>1 has a weakly convergent subsequence {Qn,, }m>1-
2. The limit Q of every weakly convergent subsequence of {Qn}n>1 is a solution
of the calibration problem with data Chy.

If the solution of the calibration problem with the limiting data C}; is unique,
this definition reduces to the standard definition of continuity, because in this case
every subsequence of {Q,} has a further subsequence converging towards @, which
implies @Q,, = Q.

Remark 3.1. Note that the above definition can accommodate the presence of
random errors (“noise”) in the data. In this case the observational error can be de-
scribed by a separate probability space (€, £, po). The continuity property must then
be interpreted as almost-sure continuity with respect to the law pg of the observational
errors: for every (random) sequence {C%;},>0 such that ||CY; — Caslw —0 al-

most surely, any sequence of solutions with data {C}; },>0 must verify the properties
of Definition 3.2 pg-almost surely.

It is easy to construct an example of market data leading to a least squares
calibration problem (3.4) that does not satisfy the above definition.

Example 3.2. Assume Sy = 1, no interest rates or dividends, and observations
given by a single option price:

Op(T=1,K=1)=E[(eX —=1)T] forn>1 and Cy(T=1,K=1)=1-¢"?,

where X' is defined by (3.6) and A > 0. Then ||C}, — Cyllwy —— 0 and X7 is

a solution for data C7;, but the sequence {X;'} has no convergent subsequence (cf.
Corollary VIL.3.6 in [27]).

In addition to these theoretical obstacles, even if a solution exists, it may be
difficult to compute numerically since, as shown in [14, 36], the pricing error ||Chy —
C?||? is typically nonconvex and can have many local minima, preventing a gradient-
based minimization algorithm from finding the solution.

4. Relative entropy as a selection criterion. When constraints given by
option prices do not determine the exponential Lévy model completely, additional
information may be introduced into the problem by specifying a prior model: we
start from a reference Lévy process P and look for the solution of the problem (3.4)
that has the smallest relative entropy with respect to P. For two probabilities P and
Q on the same measurable space (2, F), the relative entropy of ) with respect to P
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is defined by

(4.1) 1(Q|P) = { E" [% log %} ifQ< P,
o0

otherwise,

where by convention zlogx = 0 when x = 0. We define I7(Q|P) := I(Q| £, | P|#,)-
PROBLEM 3 (minimum entropy least squares calibration problem). Given prices

Chr of call options and a prior Lévy process P, find a least squares solution Q* €
LSS(Chr), such that

(4.2) 1@IP)= _inf  1(@IP).

In what follows, any such @Q* will be called a minimum entropy least squares solution
(MELSS) and the set of all such solutions will be denoted by MELSS(Cy).

P reflects a priori knowledge about the nature of possible trajectories of the
underlying asset and their probabilities of occurrence. A natural choice of prior,
ensuring absence of arbitrage in the calibrated model, is an exponential Lévy model
estimated from the time series of returns. Whether this choice is adopted or not does
not affect our discussion below. Other possible ways to choose the prior model in
practice are discussed in [14], which also gives an empirical analysis of the effect of
the choice of prior on the solution of the calibration problem.

The choice of relative entropy as a method for selection of solutions of the cali-
bration problem is driven by the following considerations:

e Relative entropy can be interpreted as a (pseudo-)distance to the prior P: it
is convex nonnegative functional of @) for fixed P, and equal to zero if and
only 1f = =1 P-a.s. To see this, observe that

e {d@ gd@} P {d@ g 19 _ 4@ 11
dP dP dP dP dP
and that zlogz — z + 1 is a convex nonnegative function of z, equal to zero
if and only if z = 1.
e Relative entropy for Lévy processes is easily expressed in terms of their char-
acteristic triplets (see Theorem A.1).
e Relative entropy has an information-theoretic interpretation and has been
repeatedly used for model selection in finance (see section 1).
Using relative entropy for the selection of solutions removes, to some extent, the
identification problem of least squares calibration. Whereas in the least squares case
this was an important nuisance, now, if two measures reproduce market option prices
with the same precision and have the same entropy relative to the prior, this means
that both measures are compatible with all the available information. Knowledge
of many such probability measures instead of one may be seen as an advantage,
because it allows us to estimate model risk and provide confidence intervals for the
prices of exotic options [12]. However, the calibration problem (4.2) remains ill-posed:
since the minimization of entropy is done over the results of least squares calibration,
problem (4.2) may only admit a solution if problem (3.4) does. Also, LSS(C}y) is not
necessarily a compact set, so even if it is nonempty, (4.2) may not have a solution.
Other undesirable properties such as absence of continuity and numerical instability
are also inherited from the least squares approach.



RETRIEVING LEVY PROCESSES FROM OPTION PRICES 9

The MELSS does not always exist, but if the prior is chosen correctly such that
(3.4) admits a solution with finite relative entropy with respect to the prior, then
MELSSs will also exist.

LEMMA 4.1. Let P € LxaNL}, for some B > 0 and assume problem (3.4) admits
a solution Q* with I(Q*|P) = C < co. Then problem (4.2) admits a solution.

Proof. Under the condition of the lemma, it is clear that the solution @Q* of
problem (4.2), if it exists, satisfies I1(Q*|P) < C. This entails that Q* < P, which
means by Theorem 1V.4.39 in [27] that Q* € [,JBC. Therefore, @* belongs to the set

(43) LEN{QeMNL:|C?—Cyll=[C? —Cul}n{Q e L: I(QIP) < C}.

Lemma A.2 and the Prohorov’s theorem entail that the level set {Q € £ : I(Q|P) <
C} is relatively weakly compact. On the other hand, by Corollary A.4, I(Q|P) is
weakly lower semicontinuous with respect to @ for fixed P. Therefore, the set {Q €
P(Q) : I(Q|P) < C} is weakly closed, and since by Lemma 2.1 M N L} is also weakly
closed, the set M N LLEN{Q € L : I(Q|P) < C} is weakly compact. Lemma 3.1
then implies that the set (4.3) is also weakly compact. Since I(Q|P) is weakly lower
semicontinuous, it reaches its minimum on this set. O

Remark 4.1. It is essential for our analysis that the model has discontinuous
trajectories, i.e., the prior P corresponds to a process with jumps, not a diffusion
process. If P corresponds to the law of a Markovian diffusion model, then the set of
processes which have both the martingale property and finite entropy with respect to
P is reduced to a single element and the solution to 4.2 is trivial (this follows, e.g.,
from Theorem IV.4.39 in [27]).

5. Regularization using relative entropy. As observed in [14] and in section
4, problem (4.2) is ill-posed and hard to solve numerically. In particular its solutions,
when they exist, may not be stable with respect to perturbations of market data.
If we do not know the prices Cy exactly but only dispose of observations C§, with
[|CS; — Csllw < & and want to construct an approximation to MELSS(Cyy), it is not
a good idea to solve problem (4.2) with the noisy data C4, because MELSS(C3,) may
be very different from MELSS(Cys). We therefore need to regularize the problem
(4.2), that is, construct a family of continuous “regularization operators” {Rq }a>0,
where « is the regularization parameter such that R, (C%;) converges to an MELSS
as the noise level § tends to zero if an appropriate parameter choice rule 6§ — a(6) is
used [20]. The approximation to MELSS(C)y) using the noisy data C9, is then given
by R.(C$,) with an appropriate choice of a.

Following a classical approach to regularization of ill-posed problems [20, 4], we
regularize (4.2) by using the relative entropy as a penalization term:

(5.1) Ja(Q) = IOy = COU3, + a1 (QIP),

where « is the regularization parameter. We then solve the following optimization
problem.

PROBLEM 4 (regularized calibration problem). Given prices Cys of call options,
a prior Lévy process P, and a regularization parameter a > 0, find Q* € M N L such
that

(5'2) JQ(Q*) = Qei/r\l/fﬁ/; JQ(Q)

Problem (5.2) can be thought of in two ways:
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o If the MELSS with the true data Cj exists, (5.2) allows us to construct a
stable approximation of this solution using the noisy data.

o If the MELSS(C)s) = ), either because the set of least squares solutions is
empty or because the least squares solutions are incompatible with the prior,
the regularized problem (5.2) allows us to achieve, in a stable manner, a
trade-off between matching the constraints and the prior information.

In the rest of this section we study the regularized calibration problem. Under our
standing hypothesis that the prior Lévy process has jumps bounded from above and
corresponds to an arbitrage-free market (P € Ly 4 ﬂﬁg), we show that the regularized
calibration problem always admits a solution that depends continuously on the market
data. In addition, we give a sufficient condition on the prior P for the solution to be
an equivalent martingale measure and show how the regularization parameter a must
be chosen depending on the noise level ¢ if the regularized solutions are to converge
to the solutions of the minimum entropy least squares calibration problem (4.2).

5.1. Existence of solutions. The following result shows that, unlike the exact
or the least squares formulations, the regularized inverse problem always admits a
solution.

THEOREM 5.1. Let P € Lna ﬂﬁg for some B > 0. Then the calibration problem
(5.2) has a solution Q* € M N LE.

Proof. By Lemma A.5, there exists Q° € MNL with I(Q°|P) < oo. The solution,
if it exists, must belong to the level set L (qo) := {Q € L : I(Q|P) < Jo(Q%)}.
Since Jo(Q%) = [|Car — C?°|12 + I(Q°|P) < oo, by Lemma A.2 Ly, (qo) is tight
and, by Prohorov’s theorem, weakly relatively compact. Corollary A.4 entails that
I(Q|P) is weakly lower semicontinuous with respect to Q. Therefore, {Q € P(Q) :
I(Q|P) < Jo(Q")} is weakly closed, and since by Lemma 2.1 MNLF is weakly closed,
MNLENL Ja(Q0) is weakly compact. Moreover, by Lemma 3.1 the squared pricing
error is weakly continuous, which entails that J,(Q) is weakly lower semicontinuous.
Therefore, J,(Q) achieves its minimum value on MNLENL Ju(Q0), Which proves the
theorem. ]

Since P € L}, (i.e., with jumps of X bounded from above P-a.s.), solutions @ are
also in £}. This may seem a limitation if the data is generated by a Lévy process
with jumps unbounded from above. This case is unlikely in financial applications; the
form of Lévy densities found empirically in [14] gives little evidence for large upward
jumps. Even in the theoretical case where the observed option prices are generated
by an exponential-Lévy model with jumps unbounded from above, the localization
estimates in [15, Proposition 4.2.] show that we can reproduce such prices with a
Lévy process in £F by choosing B large enough.

Since every solution Q* of the regularized calibration problem (5.2) has finite
relative entropy with respect to the prior P, necessarily Q* <« P. However, Q*
need not in general be equivalent to the prior. When the prior corresponds to the
“objective” probability measure, absence of arbitrage is guaranteed if options are
priced using an equivalent martingale measure [25]. The following theorem gives a
sufficient condition for this equivalence.

THEOREM 5.2. Let P € Lya ﬁ[fé and assume the characteristic function ®% of
P satisfies

(5.3) / O (u)du < o

—o0
for some T < Ty, where Ty is the shortest maturity, present in the market data. Then
every solution Q* of the calibration problem (5.2) satisfies Q* ~ P.
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Remark 5.1. Condition (5.3) implies that the prior Lévy process has a continuous
density at time T and all subsequent times. Two important examples of processes
satisfying the condition (5.3) for all T" are

e processes with nonzero Gaussian component (A > 0).
e processes with stablelike behavior of small jumps, that is, processes whose
Lévy measure satisfies

(5.4) 3B € (0,2), limiionfa’ﬁ/ |z|?v(dz) > 0.

—€

For a proof, see [34, Proposition 28.3]. This class includes tempered stable
processes [13] with a > 0 and/or a— > 0.
To prove Theorem 5.2 we will use the following lemma.
LEMMA 5.3. Let P € M N LE with characteristic triplet (A,v,~) and character-
istic exponent 1. There exists C' < oo such that

Yo — 1)

W= <C WveR

Proof. From the Lévy—Khinchin formula and (2.3),

o0

(5.5) v—1i) = —%Av(v — i)+ / (e'V=IT Ljy — ® — jwe” ) (dx).

—00
Observe first that

Ov2z?e”

=0T |y e _ jpe® = iv(ze® +1—e")+ 2

for some 6 with |6] < 1.

Therefore, for all v with |v| > 2,

el v=0T 4 4oy o _ jyet . -
< ze® +1—e® + x2e”.

(56) (v—1i)v

On the other hand,

T ,L'ex(eimc _ 1) Z-(ei(v—i)x _ 1)

etv=DT 4 iy — e — jye

(v—1)w B v v—1

jvx?

. . 2
x ; 21\ —1)x
= —re® — 5 e@ynw_i_x_’_ ( )

e@gi(v—i);E
with some 01,605 € [0,1]. Therefore, for all v with |v| < 2,

(5.7)

i(v—i)x R N 2
c e e gx(l—e”)—i—%(v—i— 1+v2e”) < a(l —e®) + 22(1 + 2e%).

(v—1)v

Since the support of v is bounded from above, the right-hand sides of (5.6) and (5.7)
are v-integrable and the proof of the lemma is completed. 0

Proof of Theorem 5.2. Let Q* be a solution of (5.2) with prior P. By Lemma
A5, there exists Q° € M N L such that Q° ~ P. Denote the characteristic triplet of
Q* by (A,v*,~v*) and that of Q° by (4,°,4).
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Let Q. be a Lévy process with characteristic triplet (A, zv° + (1 — 2)v*, 27° +
(1 —x)y*). From the linearity of the martingale condition (2.3), it follows that for
all z € [0,1], Q, € M N L. Since Q* realizes the minimum of J,(Q), necessarily
Jo(Qz) — Jo(Q*) > 0 for all z € [0,1]. Our strategy for proving the theorem is first
to show that 1Cu=C2I*—ICn-C"|?

M is bounded from below as x — 0, necessarily Q* ~ P.

The first step is to prove that the characteristic function ®* of Q* satisfies the
condition (5.3) for some T' < Tp. If A > 0, this is trivial. Assume that A = 0. In this
case, |®%(u)| = exp(T [~_(cos(uz) — 1)v*(dz)). Denote 925 := ¢*. Since Q* < P,

by Theorem 1V.4.39 in [27], [% (1/¢*(z) — 1)?vF(dz) < K < oo for some constant
K. Therefore, there exists another constant C' > 0 such that

is bounded as z — 0 and then to show that if

/ (1 — cos(ux))|¢p* — 1|vF (dz) < C
{¢*(x)>C}

uniformly on w. For all » > 0,

/OO (1 — cos(ux))|¢* — 1| (dz) < C —|—/ (1 — cos(ux))|¢* — 1|v* (dx)

—0o0 {¢*(x)<C}

1
<C+ g/ (1 — cos(ux))?v? (dz) + 2*/ (6" — 1) (dx)
{6(2)<C} "o @)<oy

<C+ T/oo (1 — cos(ux))vF (dz) + W

This implies

o0 00 9
/ (cos(uz) — 1)v*(dz) < (147) / (cos(uz) — P (da) + 0 + KYVCHD?

— 00 — 00

2r

for all r > 0. Therefore, if the characteristic function of P satisfies the condition (5.3)
for some T, the characteristic function of Q* will satisfy it for every T > T.

Since P € LnaNLE, Qr € MNLE for all z € [0,1]. Therefore, condition (11.15)
in [13] is satisfied and option prices can be computed using equation (11.20) of [13]:

C9(T,K)=(1— Ke ™"

o * . 0 .
+ i e—iv log K+ivrT exp(T(l — SL')’(/J ('U — Z) +wa (U — ,L)) — 1dU,
2 J_o w(1 4+ )

where 1° and ¥* denote the characteristic exponents of @y and Q*. It follows that

C%9(T,K) — C9 (T, K)

X

T(1—z)p* (v—3)+Taxh® (v—i Top* (v—i
1 o0 eimogKﬂ,wTe (A—2)¢" (v—i)+Tzy"(v—i) _ TYP"(v—i) o,

~or e w(1l +iv)x

2This method for option pricing by Fourier transform is originally due to Carr and Madan [10].
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Since RY°(v — i) < 0 and Ry* (v — i) < 0 for all v € R, Lemma 5.3 implies

v log KetionT eT(Ll—2)y" (v=0)+ Tz’ (v—i) _ TP (v—i)
e

iv(l 4 iv)x

LT g0 — )~y — )
[o(1 + iv)]

<

< T|eT(1—w)¢*(v—i) |Cl

for some constant C’. From the dominated convergence theorem and since Q* satisfies

Qux
(5.3), BCT;T’K) |z=0 exists and is bounded uniformly on 7" and K in the market data
Qz||2_ _CQ" 2
Shdl QL,HCM €~ I' is bounded as z — 0. To
complete the proof, it remains to show that if w is bounded from below
as  — 0, necessarily Q* ~ P. Using the convexity (with respect to v? and v?) of

the two terms in the expression (A.1) for relative entropy, we have

1(Q:|P) — I1(Q"|P)

T

2
T

=2+ (1 -2y =P - / 22 + (1 —2)v* —vP)(dz) ¢ lazo
24z j21<1

2
Teo . P . P

- == - — 1
2Ax {7 7 /|z|<1Z(V . )(dZ)} 470

i wa / (@6 + (1 — 2)9) log(ad® + (1 - 2)¢") — 26 — (1 2)6" + 1}r7(d)

set. This in turn means that 1€¥=

TOO o * * *
-2 [ o hoste) 67 11 )
2
T
<Ix {vo —~F - /Z<1 2(V° — VP)(dZ)} Lazo
T

2
_ Too * P * P
54 {7 y /lzlglz(v v )(dz)} Lazo

+ Too / {¢"log(¢°) — ¢° + 117 (dz) — T / {¢"log(¢*) — ¢* + 1}v7 (d2)
{¢p*>0} {¢p*>0}

+Too/ {¢Olog<x¢0>—¢0}up<dz>s1<Qo|P>+Too/ (dologz — )P (dz).
{¢*=0} {¢*=0}

Since Jo(Qz) — Jo(Q*) > 0, this expression must be bounded from below. Therefore,
because ¢ > 0, necessarily v”({¢* = 0}) = 0 and Theorem IV.4.39 in [27] entails
that P < Q*. O

5.2. Continuity of solutions with respect to data.
THEOREM 5.4 (continuity of solutions with respect to data). Let {C};}n>1 and
Cys be data sets of option prices such that

IC3 = Catllu = _0.

Let P € LyaN Eg, a > 0, and for each n let @, be a solution of the calibration
problem (5.2) with data CYy;, prior Lévy process P, and regularization parameter «.
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Then {Qn}n>1 has a subsequence converging weakly to Q* € M N EE, and the limit
of every converging subsequence of {Q,}n>1 is a solution of calibration problem (5.2)
with data Cyy, prior P, and regularization parameter a.

Proof. By Lemma A.5, there exists Q° € M N L with I(Q°|P) < oo. Since, by
Lemma 3.1, |CQ° —Cm, |2 < 82 for all n, al(Qn|P) < S2+al(Q°|P) for all n. There-
fore, by Lemmas 2.1 and A.2 and Prohorov’s theorem, {Q, },>1 is weakly relatively
compact. Together with Lemma 2.1 this proves the first part of the theorem. 1]

Choose any subsequence of {Q,,},>1 converging weakly to Q* € MNL}. To sim-
plify notation, this subsequence is denoted again by {Q,, },,>1. The triangle inequality
and Lemma 3.1 imply that
(5.8) 109 — 2 —— €9~ Ol

Since, by Lemma A.3, the relative entropy functional is weakly lower semicontin-
uous with respect to @, for every Q € M N LE,

1097 — Cur|? + aI(Q*|P) < lin}linf{HCQ” = CyIIP + oI (Qn|P)}
< limninf{HCQ — Oy + oI (QIP)}
= lim |C9 — CyI? + aI(Q|P)
= [IC? = Cum)* + 2I(Q|P),

where the second inequality follows from the fact that @,, is the solution of the cali-
bration problem with data C'}; and the last line follows from the triangle inequality.

5.3. Convergence to MELSSs. The convergence analysis of regularization
methods for inverse problems usually involves the study of the solution of the reg-
ularized problem as the noise level ¢ vanishes, the regularization parameter being
chosen as a function () of the noise level using some parameter choice rule. The
following result gives conditions on the parameter choice rule § — «(é) under which
the solutions of the regularized problem (5.2) converge to MELSSs defined by (4.2).

THEOREM 5.5. Let {ij/[} be a family of data sets of option prices such that
|Car — C4|l <6, let P € Lnan LY, and assume there exists a solution Q of problem
(3.4) with data Cyr (a least squares solution) such that I(Q|P) < oo.

In the case where the constraints are attainable, i.e., ||[C9 — Cy|| = 0, let a(6) be
such that a(6) — 0 and % — 0 as 6 — 0. Otherwise, let a(6) be such that a(6) — 0
andﬁﬁo as 6 — 0.

Then every sequence {Q%}, where &, — 0 and Q% is a solution of problem (5.2)
with data Cf}}, prior P, and regularization parameter «(by), has a weakly convergent
subsequence. The limit of every convergent subsequence is a solution of problem (4.2)
with data Cyy and prior P. If the MELSS is unique (MELSS(Chr) = {Q7}), then

Q° = Q.

5—0

Proof. By Lemma 4.1, there exists at least one MELSS with data Cj; and prior
P, with finite relative entropy with respect to the prior. Let Q* € MELSS(Cyy).
Since Q% is the solution of the regularized problem, for every k,

1C9™ — C3 2 + a(81) 1(Q%|P) < [|C97 = C&% 1% + a(61)I(QT|P).
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Using the fact that for every r > 0 and for every z,y € R,
(1—r)2® + (1 =1/r)y? < (& +y)* < (L+r)a® + (L +1/r)y’,

we obtain that

(5.9) (1-n)[C?" = Cur|l? + () 1(Q%|P)
2
<1 +7)c?" —Coul? + 2% + a(6,)I(QT|P),

and since Q1 € LSS(C)y), this implies for all r € (0,1) that
5 Qt 2 2‘51% +
(5.10) a(op)(Q™|P) < 2r[|C% = Cur|* + = + alén) Q| P).
If the constraints are met exactly, ||CQJr —C)]| = 0, and with the choice r = 1/2,

the above expression yields

487

1@QIP) < iy

+1(QF|P).

2
Since, by the theorem’s statement, in the case of exact constraints afgk) — 0, this

implies

(5.11) limsup(I(Q™|P)} < 1(Q*[P).

If |[C9" — Cy|| > 0 (misspecified model), then the right-hand side of (5.10)
achieves its maximum when r = §,]|CQ" — Cy/|| =%, in which case we obtain

46,
(o)

1(Q%*|P) < 1C9" — Cur| + 1(Q*|P).

Since in the case of approximate constraints % — 0, we obtain (5.11) once again.

Inequality (5.11) implies in particular that I(Q®*|P) is uniformly bounded, which
proves, by Lemmas A.2 and 2.1, that {Q®*} is relatively weakly compact in M N L}.

Choose a subsequence of {Q%*} converging weakly to Q* € M N L}. To simplify
notation, this subsequence is denoted again by {Q% };>1. Substituting » = § into
(5.9) and making k tend to infinity shows that

limsup [|[C2™" — Oy < 097 — Op|%.
k

Together with Lemma 3.1 this implies that
109" — Cul* < 1097 — O

hence Q* is a least squares solution. By weak lower semicontinuity of I (cf. Lemma
A.3) and using (5.11),

[(Q"|P) < liminf I(Q°*|P) < limsup [(Q"|P) < I(Q*|P),
k
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which means that Q* € MELSS(C)s). The last assertion of the theorem follows
from the fact that in this case every subsequence of {Q%} has a further subsequence
converging toward Q7. O

Remark 5.2 (random errors). In line with Remark 3.1, it is irrelevant whether the
noise in the data is “deterministic” or “random,” as long the error level § is interpreted
as a worst-case error level, i.e., an almost-sure bound on the error:

(5.12) Po(||C3r — Curl| < 8) = 1.

In this case, Theorem 5.5 holds for random errors, convergence being interpreted as
almost-sure convergence with respect to the law Py of the errors.

6. Stability with respect to the prior. If we choose a prior Lévy process P
with a finite number of jump sizes (sometimes called simple Lévy processes),

(6.1) v =3 pibia (da),

k=0
then the solution @ satisfies @ < P by Theorem 1V.4.39 in [27]. Thus the corre-
sponding Lévy measure v? satisfies v? < v* and is of the form

(6.2) V9 =Y by, (d).

The calibration problem (5.2) is then a finite-dimensional optimization problem and
can be solved using a numerical optimization algorithm [14]. The advantage of this
method is that we are simply solving (5.2) with a specific choice of prior, so all results
of section 5 hold. Numerical methods for solving this problem are discussed in the
companion paper [14]. Here we will complement these results by a theorem showing
that the solution of a calibration problem with any prior can be approximated (in
the weak sense) by a sequence of solutions of calibration problems with simple Lévy
processes as priors. We start by showing that every Lévy process can be approximated
by simple Lévy processes of the form (6.1).

LEMMA 6.1. Let P be a Lévy process with characteristic triplet (A,v,~y) with
respect to a continuous truncation function h; for every mn, let P, be a Lévy process
with characteristic triplet (A, vy,,7y) (with respect to h), where

gty Al = U 1)

1/\:Ek

zg := (2(k — n) —1)/v/n, and p is a (positive and finite) measure on R, defined by
w(B) := [5(1 Az?)v(dx) for all B € B(R). Then P, = P.
Proof. For a function f € Cp(R), define
0, x>2n,
fa():=4¢0, < -2Vn,
f(zi)x € [x; —1/v/n,z; +1/y/n) with 1 <14 < 2n.

Then [(1 A 22)f(2)vy(dz) = [ fa(z)u(dz). Since f(x) is continuous, f,(z) ——
f(z) for all z and since f is bounded, the dominated convergence theorem implies

(6.3) liTan/(l A 2?) f(x)vn(d) = hm/fn = /(1 A 2?) f(z)v(dz).
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With f(x) = hz(l) the above yields

/hQ(x)l/n(dx) Tﬁoo/hz( yv(dx).

On the other hand, for every g € Cy(R) such that g(x) = 0 on a neighborhood
of 0, f( ) = 9*) elongs to Cy(R). Therefore, from (6.3), lim, [ g(x)v,(dz) =

2
[ g9(z)v(dz) anéAgy Corollary VIL.3.6 in [27], P, = P. 0

To compute numerically the solution of the calibration problem (5.2) with a given
prior P, we can construct, using Lemma 6.1, an approximating sequence {P,} of
simple Lévy processes such that P, = P. Problem (5.2) with P replaced by P,
is then a finite-dimensional optimization problem that can be solved. The resulting
sequence {@,} of solutions will converge, as shown in the following theorem, to a
solution of the calibration problem with prior P.

THEOREM 6.2. Let P,{P,}n>1 C Lna N L} such that P, = P. Let a > 0, let
Chr be a data set of option prices, and for each n > 1 let @, be a solution of the
calibration problem (5.2) with prior P,, regularization parameter «, and data Cyy.
Denote the characteristic triplet (with respect to a continuous truncation function h)
of Py by (A, vl AP and that of P by (A, v ,4F). If A,, — A >0, then the sequence
{Qn}n>1 has a weakly convergent subsequence and the limit of every weakly convergent
subsequence of {Qn}n>1 s a solution of the calibration problem (5.2) with prior P.

Proof. By Lemma A.5, there exists C' < oo such that for every n one can find
Qn € MNL with I(Q,|P,) < C. Since |09 —Cy||2 < S2 for every n and Q,, is the
solution of the calibration problem, I(Q,|P,) < S2/a+C < oo for every n. Therefore,
by Lemma A.2, {Q,} is tight and, by Prohorov’s theorem and Lemma 2.1, weakly
relatively compact in M N EE. Choose a subsequence of {Q,,} converging weakly to
Q € M N LE. To simplify notation, this subsequence is also denoted by {Qy }n>1-
It remains to show that @ is indeed a solution of (5.2). We can parameterize the
characteristic triplet of any Q? € M N L with I(Q|P) < oo as

<A,¢Vp,w e h<x>>¢uP<dx>) ,

— 00

where ¢ € L'( (|z|> A1)vF(dx) ), ¢ > 0. To prove that @ is a solution of (5.2), we
need to establish that

(6.4) 169 = Culls, + aI(Q. P) < [[C97 = Cull}, + aI(Q°|P).
This will be shown in three steps.
Step 1. Let Cék) (R) denote the set of continuous bounded functions ¢ : R — R

equal to k on some neighborhood of 0: for each ¢ € C’(k)( R) there exists 6 > 0 with

¢(x) =k for all z : |z| < 6. The first step is to prove (6.4) for every ¢ € C(l) Choose
one such ¢ and let Q¢ denote an element of M N £ with triplet

(Aot == = [ = 1= ot ().

oo

Corollary VIL.3.6 in [27] and the fact that P,, = P imply that Q¢ = @Q?, and therefore
by Lemma 3.1,

lim €27 — Cy[)2, = €97 = O
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Moreover, ¢plogep +1 — ¢ € CZSO)(]R) and h(¢p — 1) € C’ISO) (R). Therefore, using once
again Corollary VII.3.6 in [27], we obtain (here, we use the hypothesis lim A,, = A > 0)

. T > 2
i 1(QE1P) =t 5 = {52 o = [ o~ DL} 1a,z0

+lim T /Oo (¢log ¢+ 1 — ¢, (dx) = I(Q?|P).

— 00

Lemma A.3 entails that

(6.5) I(Q, P) < liminf I(Q,, P,,),

and since, by Lemma 3.1, the pricing error is weakly continuous, we have, using the
optimality of @,

(6.6) [IC? = Cumlf, + al(Q, P) < Liminf{[| 0% — Corl, + al(Qu, Pa)}

< liminf{[|C9 = Cu |3 +al(Q5, Pa)} = [C° = Curl + aI(Q7, P).

n?

This proves (6.4) for all ¢ € C’él)(R).

Step 2. Let ¢ € L*((|z|?> A 1)vF) such that ¢ > 0 and |¢(z) — 1| < C(|z| A 1) for
every © € R. Then there exists a sequence {¢,} C C’él)(R) such that ¢, — ¢ v -a.e.
and |¢n(x) — 1| < C(Jz| A1) for every n and every = € R. Then by Step 1,

(6.7) 1CQ — Curl2, + aI(Q, P) < [|[CO°" — Car|| + aI(Q%, P)  Vn.

Using the dominated convergence theorem and Corollary VII.3.6 in [27] yields that
Q% = Q®. Since |h(x)(¢, — 1)| < Ch(z)(|z| A1) and

Pnlog dn +1— ¢ < (¢ — 1)* < C*(|z]> A 1),

the dominated convergence theorem yields

lim I(Q%*|P,) = li Too f 60 P Ooh P (d 21
im 7(Q In)—lggnQA{v — —/_Do (z)(n — v (x)} A#0

Flm T / " (G logbn + 1 — )P (da) = 1(Q°)P).

Therefore, by passing to the limit n — oo in (6.7), we obtain that (6.4) holds for every
# € L*((|z|> A 1)vP) such that ¢ > 0 and |¢(x) — 1| < C(|z| A 1).

Step 3. Let us now choose a nonnegative ¢ € L'((|z|?> A 1)vF). Without loss of
generality, we can assume I(Q?|P) < co. Let

1—n(Jz| A1), ¢(x) <1l—n(lz|Al),
Pn(z) = q L+n(z|A1), ¢(z)>1+n(z|A1),
o(x) otherwise.

Then ¢, < ¢V 1 and, once again, the dominated convergence theorem and Corollary
VIL.3.6 in [27] entail that Q%" = Q®. Since |h(x)(¢, — 1)| < |h(z)(¢ — 1)| and
Onlogd, +1— ¢, < dlogp + 1 — ¢, again by dominated convergence we obtain that
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lim,, [(Q%"|P,) = I(Q?|P) and by passage to the limit n — oo in (6.7), (6.4) holds for
all ¢ € LY((Jz|? A 1)vF) with ¢ > 0, which completes the proof of the theorem. a

Another implication of the above theorem is that small changes in the prior Lévy
process lead to small changes in the solution: the solution is not very sensitive to
minor errors in the determination of the prior measure. This result confirms the
empirical observations made in [14].

7. Conclusion. We have proposed here a stable method for constructing an op-
tion pricing model of exponential Lévy type, consistent with a given data set of option
prices. Our approach is based on the regularization of the calibration problem using
the relative entropy with respect to a prior exp-Lévy model as penalization term. The
regularization restores existence and stability of solutions; the use of relative entropy
links our approach to previous work using relative entropy as a criterion for selection
of pricing rules. This technique is readily amenable to numerical implementation, as
shown in [14], where empirical applications to financial data are also discussed.

The problem studied here is an example of regularization of a nonlinear, infinite-
dimensional inverse problem with noisy data. The above results may also be useful
for other nonlinear inverse problems where positivity constraints on the unknown
parameter make regularization by relative entropy suitable.

Finally, although we have considered the setting of Lévy processes, this approach
can also be adapted to other models with jumps—such as stochastic volatility models
with jumps (see [13, Chapter 15] for a review)—where the jump structure is described
by a Lévy measure to be retrieved from observations.

Appendix A. Relative entropy for Lévy processes. In this appendix we
explicitly compute the relative entropy of two Lévy processes in terms of their char-
acteristic triplets and establish some properties of the relative entropy viewed as a
functional on Lévy processes. Under additional assumptions the relative entropy of
two Lévy processes was computed in [11] in the case where @ is equivalent to P and
the Lévy process has finite exponential moments under P and in [30] in the case where
log ‘;Z—IQ; is bounded. We give here an elementary proof valid for all Lévy processes.

THEOREM A.1 (relative entropy of Lévy processes). Let {X;}i>0 be a real-valued
Lévy process on (2, F,Q) and on (Q,F,P) with respective characteristic triplets
(Ag,vg,vq) and (Ap,vp,vp). Suppose that Q@ < P (by Theorem IV.4.39 in [27],
this implies that A? = AF and 19 < v') and denote A :== Ag = Ap. Then for
every time horizon T < T, the relative entropy of Q|z, with respect to P|g, can be
computed as follows:

2
T 1
(A1) EQIP) = 1QUr Plre) = 55 {19 =27 = [ 202 =)o)} Lago
-1
* (dvQ dv® dv®
T ——log —— +1— — | v (dz).
+ /_OO (duP 8 P T dyP)” (dz)
Proof. Let {X{}i>0 be the continuous martingale part of X under P (a Brownian
motion), pu be the jump measure of X, and ¢ := jg—ﬁ. From [27, Theorem III.5.19],
the density process Z; := ZjQJ‘li t is the Doléans-Dade exponential of the Lévy process
{Ni}1>0 defined by

m:ﬁﬁ+/ (¢(x) — D{p(ds x dz) — ds v* (d)},

[0,t] xR
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where 3 is given by
P { 2009 =" = fa<zleo(@) = DrP(dz)} i A>0,

0 otherwise.

Choose 0 < e < landlet I := {x:e < ¢(z) < e~1}. Wesplit V; into two independent
martingales:

N{ := BX7 + /[0 ) I((b(x) — D{p(ds x dzx) — ds vF(dz)} and

N/ = / (p(z) — 1){u(ds x dx) — ds v¥' (dz)}.
[0,¢]x (R\T)

Since N" and N never jump together, [N', N"]; = 0 and E(N'+N"); = E(N'):E(N");
(cf. equation I1.8.19 in [27]). Moreover, since N’ and N are Lévy processes and
martingales, their stochastic exponentials are also martingales (Proposition 8.23 in
[13]). Therefore,

Ir(Q|P) = E¥[Zr log Z7]
= EV[E(N")rE(N")rlog E(N')r] + ET[E(N")rE(N")r log E(N")7]
(A.2) = EP[E(N)7log E(N') 7] + EF[E(N")rlog E(N") 7]
if these expectations exist.

Since AN/ > —1 a.s., £(N’); is almost surely positive. Therefore, from Lemma
5.8 in [23], Uy :=log E(N'); is a Lévy process with the following characteristic triplet:

AY = 24,
vW(B) =vP(In{z:log¢(x) € B}) VB € B(R),

2A o
Y = _ﬁT _/ (€” = 1= aljy<1)vY (da).

This implies that U has bounded jumps and all exponential moments. Therefore,
E[UreYT] < 0o and can be computed as follows:

— 00

EP[UpeVr] = —i-L BP[6#Vr)|._, = —iTy/(—i) EV[eV7] = —iT9/(—i)

dz
=T (AU + ’YU + / (xe® — x1|x|<1)uU(dm)>
AT

(A.3) 4T / (6(x)log 6(x) + 1 — ()" (dx),

2 I
It remains to compute EX[E(N")r log £(N")r]. Since N is a compound Poisson
process, E(N"); = e [1,,(1 + AN), where b = S (1= é(z))vF (dr). Let v be
the Lévy measure of N and ) its jump intensity. Then
E(N")rlog E(N")p = bTEN")r + ' [ 1+ AN/) Y " log(1+ ANY)
s<T s<T

and

EP[E(N")rlog E(N")7]

— _ar (AT)E ,
=0T + T E e ar k!) E H (1+ ANY) E log(1 + AN!)|k jumps
k=0 s<T s<T
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Since, under the condition that N jumps exactly k times in the interval [0, T, the
jump sizes are independent and identically distributed, we find, denoting the generic
jump size by AN",

EP[E(N")rlog E(N")7]

& k
=0T+ e*’\T%kE[l + AN")*LE[(1 4+ AN")log(1 + AN")]
k=0 ’

= bT + ATE[(1 + AN")log(1 + AN")]

=bT + T/Oo (1 + z)log(1 + x)v" (dx)

— 00

7 [ (6 log o(z) + 1 - o(a))v” (da).
R\J

In particular, EF[E(N")r log £(N")r] is finite if and only if the integral in the last line
is finite. Combining the above expression with (A.3) and (A.2) finishes the proof. a

LEMMA A.2. Let P,{P,},>1 C L} for some B > 0, such that P, = P. Then
for every r > 0, the level set L, :=={Q € L : I(Q|P,) < r for some n} is tight.

Proof. For every Q € L,, choose any element of {P,,},>1 for which I(Q|Pg) <r
and denote it by Pg. The characteristic triplet of @ is denoted by (A%, v%,~4?) and
that of Py by (Afe,vFe «Fe). In addition, we define ¢@ := d‘i”pQQ. From Theorem
Al

(o)
| (6% 0g %) + 1 - 62 o) < /T
— 00
Therefore, for u sufficiently large,

/ p9vte(dr) < / 20°[¢% log ¢% + 1 ¢]v™(dr) <2
{69>u}

{6Q>u} ¢ log 9 ~ Tlogu’
which entails that for u sufficiently large,

2r

Q
ve(de) < —
/{¢Q>u} (dz) < Too logu

uniformly with respect to @ € L,. Let ¢ > 0 and choose u such that f{¢Q>u} v (dx) <
/2 for every @ € L,. By Corollary VIL.3.6 in [27],

|t~ [ )

for every continuous bounded function f that is identically zero on a neighborhood of
zero. Since the measures v and v for all n > 1 are finite outside a neighborhood
of zero and P,, = P, we can choose a compact K such that v/ (R \ K) < ¢/2u for
every n. Then

(A4) YR\ K) :/

pQvte (dzx) +/ V9 (dx) < e.
(R\K)N{¢?<u}

(R\K)N{¢?>u}

It is easy to check by computing derivatives that for every u > 0, on the set
{33 : ¢Q(x) < ’LL},
(69 = 1)* < 2u(¢?log ¢? +1 - ¢9).
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Therefore, for u sufficiently large and for all @ € L.,

[
/z|<1, ¢Q§ux(¢Q — v’ (dz)| + /z|<1, ¢Q>ux(¢Q — 1) (dx)

< / z2vfe (dz) + / (69 —1)2Fe (dzx) + 2/ pQve (dx)
o<1 2] <1, ¢@<u $@>u

> 4r
< z2vfe (dx +2u/ #9logp% +1 — o) (de) + ———
[ v e da) + 7

<

(A5) < / 2, Pa () 4 ST
m<1 T

By Proposition VI.4.18 in [27], the tightness of {P,,},,>1 implies that
(A.6) APn —|—/ 2P (da)
|z|<1

is bounded uniformly on n, which means that the right-hand side of (A.5) is bounded
uniformly with respect to Q € L,. From Theorem IV.4.39 in [27], A9 = AP for all
Q € L, because for the relative entropy to be finite, necessarily Q < Pg. Theorem
A.1 then implies that

2

1 Po
{ye-ar= [ a0 -vryan) <2
1 o)

From (A.6), AP is bounded uniformly on n. Therefore, inequality (A.5) shows that
|y?| is bounded uniformly with respect to Q. For u sufficiently large,

(A7) AQ+/:>O (22 A 1)¢90P2 (dz) SAQ+u/¢Q< (22 A 1P (dz)

+/ $vFe (dr) < APe +u/ (z% A 1)vPe (da) + 2r
PR >u

— 00

Tulogu

and (A.6) implies that the right-hand side is bounded uniformly with respect to @ €
L,. By Proposition VI1.4.18 in [27], (A.4), (A.7), and the fact that [y?]| is bounded
uniformly with respect to @ entail that the set L, is tight. 0

LEMMA A.3. Let @ and P be two probability measures on (Q, F). Then

an = [ e (@),

where Cy(2) is space of bounded continuous functions on Q.

Proof. Observe that

| zlogz+1—=, x> 0,
¢(x)_{ 00, ISO,

and ¢*(y) = e¥ — 1 are proper convex functions on R, conjugate to each other, and
apply Corollary 2 in [31, p. 538]. O
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COROLLARY A.4. The relative entropy functional I(Q|P) is weakly lower semi-
continuous with respect to Q for fixed P.

LEMMA A.5. Let P,{P,}n>1 C LnaN Cg for some B > 0 such that P, = P.
There exists a sequence {Qp}n>1 C M ﬂEJ]g, with Q, ~ P, for everyn and a constant
C < oo such that I(Qn|P,) < C for every n.

Proof. Let h : R — R be a continuous truncation function. For n > 1, let
(An, Vn,vn) be the characteristic triplet of P, with respect to h and let

f(B, Pn) i=yn + (; + ﬁ) Ap + /OO {(e” —1)efe" = h(a:)} U (dx).

— 00

The first step is to show that for every n, there exists a unique (3,, such that f(5,, P,) =
0 and that the sequence {3, }n>1 is bounded.
Since for every n, P, € E;g,, the dominated convergence theorem yields

oo

£8P = At [ (e = 125 D ) > 0
—oo

and since P, € L 4, the Lévy process (X, P,,) is not a.s. increasing or a.s. decreasing,
which means that at least one of the following conditions holds:

1. A, >0,

2. vp((—00,0)) > 0 and v, (0,00) > 0,

3. A, =0, l/n(( 00,0)) = 0 and ~,, — ffooo h(z)v,(dr) <0,

4. Ay =0, 1,((0,00)) = 0 and v, — [*°_ h(2)vy,(dz) > 0.
Since f4(8, Pn) > Ap, —|—m1n(fooo(e 1)?v,(da), [, (e = 1)%vy,(d)), if conditions 1
or 2 above hold, fﬁ(ﬁ , P,) is bounded from below by a positive constant and therefore

(A.9) NGyt f(Bn, Pn) =0.
If condition 3 above holds, limg__ o f(3,Py) = Yo — [~ h(z)vy(dz) < 0 and

o0
limg_,o0 f(8, P,) = 00, which means that (A.9) also holds. The case when condi-
tion 4 above is satisfied may be treated similarly.

Let us now show that the sequence {8, },>1 is bounded. Rewrite f(3, P,) as

f(B, Pn) ==y + (; + 5) (An - /Z hz(x)yn(dx)>

(A.10) - /Oo {(e”” — 1) _p(2) — (; - ﬂ) hz(a:)} v (da).

— 00

Since (e — 1)ef¢"D — gz — (L +3) 2% = o(|z|?) and the integrand in the last
term of (A.10) is bounded on (—oo, B], by Corollary VIL.3.6 in [27], for every S,

Since P also belongs to £§ N Ly a, by the same argument as above, there exists
a unique $* such that f(8, P) = 0 and f5(8*, P) > 0. This means that there exist
€ > 0 and finite constants 3_ < 3* and 3+ > (* such that f(8_,P) < —¢ and
f(B4,P) > €. One can then find N such that for all n > N, f(8-,P,) < —¢/2 and
f(B+, Pn) > €/2, which means that 3, € [6_, 4] and the sequence {4, } is bounded.
Let (X, @) be the Lévy process with characteristic triplet (with respect to h)

AQ= A, Q=

N[

ny

72 = A B, + / B()(e#€ =D — 1), (da).
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The measure @, is in fact the minimal entropy martingale measure for P, [29], but
this result is not used here. From Theorem A.1,

(A.11)
1QuIP) = =T {20+ B)An 4 B+ [ (D 1= )}

To show that the sequence {I(Q,|P,)}n>1 is bounded, observe that for
Vo e [-1,1], ‘eﬁ(ew_l) -1- Bm‘ < Bl D1 4 Be)|z|?,
Vr < B, ‘eﬁ(emfl) -1- 6x1|x‘§1’ < ﬂeﬁ(eBH) + 1+ 3B.

The uniform boundedness of the sequence of relative entropies now follows from (A.11)
and Theorem VI.4.18 in [27]. O
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DISTANCE TO UNCONTROLLABILITY FOR CONVEX PROCESSES*
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Abstract. The classical study of controllability of linear systems assumes unconstrained control
inputs. The “distance to uncontrollability” measures the size of the smallest perturbation to the ma-
trix description of the system rendering it uncontrollable and is a key measure of system robustness.
We extend the standard theory of this measure of controllability to the case where the control input
must satisfy given linear inequalities. Specifically, we consider the control of differential inclusions,
concentrating on the particular case where the control input takes values in a given convex cone.
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1. Introduction. Classical linear control theory concerns a system of the form
(1.1) z(t) = Ax(t) + Bu(t),

where, at each time ¢, the state vector z(t) lies in the space R™, the input control
u(t) lies in the space R™, and the given matrices A and B are real and of appropriate
dimensions. A key question is controllability—whether = can be steered from the
origin to an arbitrary point in the state space. To fix the ideas, suppose the input
function wu(-) is taken from

T
U= u:[O,T]—>Rm|/ lu(t)|dt < oo g,
0

the space of integrable functions over a prescribed time interval [0, T]. The associated
trajectory

¢
t— zy4,8() = / =94 Bu(s)ds
0

is then an element of the function space
X ={z:[0,T] = R" | z is absolutely continuous}.

Controllability of the linear system (1.1), or equivalently of the pair (A, B), simply
means that

{xu7A7B(T) | u GZ/l} =R"
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For convenience, we see (A, B) not just as a pair of matrices but also as an element
of L(R™™ R™), the space of linear maps from R"™™ to R™. Spaces of this type are
equipped with the operator (or spectral) norm, which we denote by || - |. Norms in
standard Euclidean spaces are denoted simply by | - |. To avoid a possible misunder-
standing, let us be more explicit:

I(A,B)|| = sup |As+ Bul.
[(s.w)|=1

As pointed out by Lee and Markus [25], the set

E={(A,B) € LR"™, R") | the system (1.1) is uncontrollable}
is closed. This fact prompted Paige [27] to introduce the number
(1.2) WA B) = inf (A, B)— (C,D)]

(C,D)eE
as measure for the “degree of controllability” of a given (A, B). The number (1.2)
indicates how much we need to perturb the system (1.1) in order to destroy its con-
trollability.

The problem of estimating (1.2) is of importance for control theorists and engi-
neers alike. In section 3 we review what has been done already in connection with
the evaluation of Paige’s distance function p : L(R"T™ R") — R. We also clarify a
point that remained a bit obscure until now, namely, the difference between real and
complex controllability.

The purpose of our work is to go beyond the traditional context of the uncon-
strained linear model (1.1). As shown in section 5, the discussion becomes more
involved when the input function wu(-) is subject to constraints. New concepts and
tools are needed to handle this more general situation. Sections 7 and 8 are devoted
to the controllability analysis of dynamical systems described by convex processes.

The notation that we employ is for the most part standard; however, a partial
list is provided for the reader’s convenience:

ImL = {Ls|s e R"} (range of an operator L defined on R™),

KerL ={s€R" | Ls=0} (nullspace of an operator L defined on R"),

dist[z,T'] = inf,ep|z—7] (distance from z to the set I),
spanK = K—K (space spanned by the cone K C R"),
linK = KN—K (lineality space of the cone K C R"),
Kt={geR"|¢"s>0Vsec K} (dual cone of K C R"),
St ={qeR"|¢'s=0Vsc S} (orthogonal space of S C R™),

grF ={(s,v) e R"XR" |v € F(s)}  (graph of a process F : R" =3 R"),
domF = {s € R" | F(s) # 0} (domain of a process F : R® =X R"),

ImF = Ugsern F () (image of a process F : R" = R").
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2. The reduction lemma. Controllability is a linear-algebraic property of the
matrix pair (A, B), and in this framework, the problem of computing the distance to
uncontrollability is a matrix distance problem. As is often the case for such problems,
rank-one perturbations are important. We capture the essential idea in the following
abstract linear algebra result that plays a ubiquitous role throughout this work. The
notation z7 indicates the transpose of the column vector x.

LEMMA 2.1 (reduction lemma). Let ' C RP be a nonempty set, © € R™ a nonzero
vector, y € RP, and F € L(R™,RP). Then,

1
2.1 inf E—-F| = — dist[Fz —y,I.
(2.1) perh oo | I =g distlFz =y, T]
Ex—yel’

Furthermore, if v is a point in I' at minimal distance from Fx —y, then

1

achieves the infimum on the left-hand side of (2.1).
Proof. Denote by « the term on the left-hand side of (2.1). Then,

o= inf sup |(F — F)s| > inf (E—F) <x>'
EeL(R",R”) |5|=1 EcL(R™,RP) ||
Ezx—yel’ Ez—yel’
> L i (Broy) - (Fr—y)| > & dist[Fz —y,T]
=Tl mecth YT I TINS p AR
Ex—yel

To prove the reverse inequality, we find a sequence {7, },en in I' such that
|Fz —y—7,| <dist[Fr —y,I]+v " VwveN.

(Recall that T is not assumed to be closed.) The corresponding linear map

1
El,:F—i—W(y—Fx—&—%)xT

satisfies B,z —y € I', and therefore

a<|E, - F|= sup |(y — Fa + )27 s|

|1'|2 |s|=1

y—Fx+ v, dist[Fx —y, T[] +v7!

<
]

]

We now let ¥ — oo and arrive at the desired conclusion. The second part of the lemma
is obtained by working with « instead of the minimizing sequence {7, }.,en. 0

What formula (2.1) says is that our complicated approximation problem in the
space (L(R™,RP),|| - ||) can be reduced to a simpler approximation problem over the
Euclidean space (R?,] -]).

3. The unconstrained linear model. Paige’s measure of controllability (1.2),
while rather natural, is not the most amenable to analysis. We therefore begin our ex-
position by discussing the easier case first analyzed by Paige, allowing the pair (4, B)
to have complex entries. Most of the material presented in this section is well known,
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but we take the opportunity to clarify some common points of confusion. The original
Paige measure of controllability is the distance function picompiex : L(Cv™m C™) - R
defined by

1 olex (A, B) = inf A, B) - (C, D).
(3 ) Heomple ( ) (C,D) unlg)ntrollable H( ) (C )”
(C,Dyec(crtm cm)
A celebrated result due to Eising [9] asserts that
(3.2) Heomplex (A, B) = iné Omin|A — 21, B,
zE

where the term on the right-hand side concerns the minimization of the smallest
singular value of the rectangular matrix [A — zI, B] with respect to the complex
scalar z. This minimization problem has been extensively studied in the last years
(cf. [6, 10, 11, 14, 17]), so we don’t indulge in this matter. Suffice it to say that the
Eising formula has its root in the Hautus [16] characterization of controllability:

(A, B) is controllable <= rank[A—z2I,B]=n VzeC.

We would like to stress the fact that in this paper we are going to work with control
systems described only in terms of real entries. The field of complex numbers is ill
adjusted when it comes to conically constrained control systems or, more generally,
with convex processes.

As shown by Gracia and de Hoyos [15], even if (A, B) has real entries, the uncon-
trollable (C, D) achieving the infimum in (3.1) may well have complex entries. The
“real” Paige function (1.2) is not just the restriction of peomplex to the real field. The
question of estimating the real Paige function can be answered in at least two different
ways.

3.1. The approach of DeCarlo and Wicks. In what follows, we identify the
set

O(r,n) ={Q € LIR",R") | Q"Q =1}

with the collection of orthonormal matrices of size n x r. The following variational
formula involves a minimization over the collection of orthonormal matrices having
at most two columns.

PROPOSITION 3.1 (see DeCarlo and Wicks [8]). Consider a controllable operator
(A, B) € L(R™t™ R™). Then, one has

(3.3) p(A; B) I(QTA(I = QQ™). Q" B)|.

= inf
QEO(1,n)UO(2,n)

From a computational point of view, formula (3.3) is not very satisfactory because
it involves a minimization problem over a complicated set of matrices. Notice that
(3.3) can be written in the form

(A, B) = min{u1 (4, B), pu2(A, B)},

where the term

. . 1/2
pi(A,B) = inf [[(QTA(I-QQ"),Q"B)| = inf [\(I—qu)ATQIerIBTqIQ}
QeO(1,m) lal=1

1/2
= inf inf [|ATq =g +BTql?] " = inf owin[A— AL, B
Jnf inf {147 = Aql” +|B ] inf omin] ]
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is rather easy to evaluate, but the computation of

o T . T\ AT
pa(A.B) = int [(QTAU - QQ").Q"B)|

remains a difficult task. As observed in [15], the term (A4, B) is not necessarily
equal to p(A, B). As a general rule, it is only an upper bound.

3.2. The approach of Hu and Davison. An alternative formula for estimat-
ing the real Paige function has been suggested by Hu and Davison [19, 20]. In the
proposition stated below, the symbols RW and ZW refer, respectively, to the real part
and the imaginary part of a complex linear map W € L£L(C"*™ C"). The notation
sssv(F) stands for the second-smallest singular value of the matrix E.

PROPOSITION 3.2 (see Hu and Davison [19, 20]). Consider a controllable operator
(A, B) € L(R™*™ R™). Then,

. RW,  —~IW,
3.4 A, B) = inf
(34) w4, B) = inf el ({ NIIW.,  RW. ])

with W, = [A — 21, B].

Paradoxically, the evaluation of the real Paige function is much more involved
than the evaluation of the complex counterpart. This should not be very surprising,
however, for readers who have encountered a similar phenomenon while comparing

the real stability radius of a matrix to the complex one. (See the survey paper of
Hinrichsen and Pritchard [18].)

3.3. Partial perturbations. The case of perturbations in the pair (A4, B) is the
most popular one, but other situations could be considered as well. It may happen,
for instance, that only the component A is subject to perturbations. The partial index

Oau(A,B) = inf A-C
Ap(A, B) I I
(C,B) uncontrollable

indicates how much one needs to perturb the first component of (A, B) in order to
produce a pair which is uncontrollable. A similar interpretation must be given to the
number

Opu(A, B) = inf B-D|.
pp(AB) =t [B-D]
(A,D) uncontrollable

Later on, these indices are used in the more general context of cone-constrained linear
systems (section 5) and control systems governed by convex processes (section 7).

4. Incorporating linear constraints on the input function. Our aim in
this work is to extend the classical theory of the distance to uncontrollability to the
case where the control u is constrained. As a first, easy but illuminating, step, let us
consider the case of linear equality constraints. The works of DeCarlo and Wicks [§]
and Hu and Davison [19, 20] can both be extended to the case of a linear system with
linear constraints on the input function:

z(t) = Ax(t) + Bu(t),
(4.1) { u(t) € S.
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Controllability for the model (4.1) simply means that {z, 4,5(T) | u € Us} = R™,
with

Us ={uel|u(t)e S ae onl0,T]}.
For convenience, we introduce the notation
E(S) = {(4, B) € L(R™™ R™) | the system (4.1) is uncontrollable}.

THEOREM 4.1 (transfer theorem). Let S be an r-dimensional subspace of R™.
Then, the index of controllability

4.2 A, B) = inf A,B)—(C,D
(42) ps(A.B) = it (A.B) - (C.D)|

for the model (4.1) is given simply by

(4.3) us(A, B) = u(4, BQ),

where Q@ € L(R",R™) is any orthonormal map having S as range.

Proof. The subspace S can be represented as the range of a certain orthonormal
map @ € L(R",R™). By writing the input  in the form u(t) = Quw(t), we arrive at
a linear control problem

(4.4) i(t) = Az(t) + BQu(t),

where the input function w is chosen without restrictions. It is not difficult to see
that (4.1) is controllable if and only if the pair (A, BQ) is controllable. This simple
but important fact is at the origin of formula (4.3). First, one can write

1(4,B) = (C,D)[| > (A, BQ) — (C,DQ)||  Y(C,D) € LR"™,R")
because @ is orthonormal. Thus,

us(A,B) > inf (A, BQ) — (C, DQ)||
(C,D)eL(®R"T™ R")
(C,DQ) uncontrollable

> it [(4BQ) —(CY)] = (A BQ).
(C,Y)EL®R™ " R")
(C,Y) uncontrollable

For the proof of the reverse inequality us(A, B) < u(A, BQ), pick up any solution

(C*,Y™*) to the minimization problem

(4.5) { minimize ||(4, BQ) - (C,Y)|,

(C,Y) € LR™" R™) uncontrollable.
Since the map D € L(R™,R") — DQ € L(R",R") is surjective, one can write

(46) M(Av BQ) = DEL%H%ﬁL,R") ||(A7 BQ) - (C >DQ)H
DQ=Y*

We now construct a D* € L(R™,R™) such that

47 D'Q=Y" and [(4,BQ)~-(C",D*Q)|| = (4, B) - (C*, D")]|.
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To see that this is possible, take an orthonormal map V' € L(R™~ ", R™) such that
ImV = S+, and define

D*=Y*Q" +BVVT.
With this particular choice, one has

D*Q=Y"Q"Q+BVVTQ=Y",
D'V =Y*QTV + BVVTV = BV.

Hence,
(A, B) — (C*, D) = i [(A=C")s+ (B —D")uw|
s,w)|<1
= sup [(A—=C")s+ (B —D")(Qv1+ V)|
[(8,71,72) <1
= Su§>|< (A= C")s+(B—-D")@m| = [(4, BQ) — (C*, D*Q)||.
s,71)|<1

Notice that (C*, D*) € Z(S5). The combination of (4.6) and (4.7) produces then the
desired inequality, completing the proof in this way. 1]

Remark. The proof technique of the transfer theorem tells us, in fact, how to con-
struct an operator (C*, D*) achieving the infimum (4.2) in the definition of ug(A4, B).
Everything boils down to solving the easier and well-understood minimization prob-
lem (4.5).

We end this section with a proposition concerning the partial indices

Oaps(A, B) = cai&g R 1A —C,
(C,B)€=(S)

Opus(A, B) = Deﬁ%ﬁfn - 1B D]
(A,D)EZ(S)

As was done in the transfer theorem, it is possible to get rid again of the linear
contraint set S.

PRrOPOSITION 4.2. Suppose that S is an r-dimensional subspace of R™ and that
Q € L(R",R™) is an orthonormal map having S as range. Then,

(4.8) Oaps(A,B) = 0ap(A, BQ) and 9dpups(A, B) = 0pu(A, BQ).

Proof. We take into account the transformation u(t) = Qw(t) that leads to the
unconstrained control system (4.4). One can show straightforwardly the first equality
in (4.8), as well as

A, B) > inf BQ —-D > A, BQ).
Opus(A,B) > et o) 1BQ — DQ|| > dpu(A, BQ)
(A,DQ) uncontrollable

For the proof of the reverse inequality Opus(A, B) < 0pu(A, BQ), pick up any solu-
tion Y* to the problem

minimize ||BQ — Y| with respect to
Y € L(R",R™) such that (A,Y) is uncontrollable,
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and observe that

Opi(ABQ) = | inf BQ-DQ.
DQ=Y*

It suffices then to construct a D* € L(R™,R™) such that
DQ=Y* and |[BQ-DQ| =B D

The construction of D* and the remaining part of the proof is as in Theorem 4.1. 1]

5. The cone-constrained linear model. In the previous section we saw that
restricting controls to take values in a subspace presents no substantial technical
difficulties to the classical theory of controllability. In this section we take the next
natural step: conical constraints. The problem of controlling a linear system by using
positive inputs has been recognized as an important one since the pioneering works
of Brammer [5] and Korobov [22] (see also Son [32]).

5.1. Preliminaries. The model under consideration in this section is

z(t) = Ax(t) + Bu(t),
(5-1) { u(t) € P, (

where the closed convex cone P is regarded as the set of “positive” elements in R™.
(Typically, P is the positive orthant of R™.)

Controllability for the model (5.1) is defined in a similar way as before, except
that now the contraint set is not the subspace S but the cone P. Controllability of
(5.1) implies, of course, controllability of the relaxed control problem

{ #(t) = Az(t) + Bu(t),

(5-2) u(t) € spanP.

Relaxation is a convenient device to be back in a linear setting, where simple and nice
controllability tests are available. In what follows, we use the notation

< A,B,P> = B(P)+ AB(P) +---+ A" 'B(P),

where addition of sets is understood in the usual Minkowski sense, and powers of
A € L(R™,R"™) correspond to iterated compositions. Since P is a convex cone, the set
< A,B, P > is also a convex cone and

span < A, B,P> = < A, B,spanP > = {C*B~:~ ¢ [spanP|"}

with C48 = [B, AB,..., A""!B] denoting the controllability matrix associated to
the pair (A, B). If one represents the space spanP as the range of a linear map
Q € L(R",R™), with r = dim[spanP], then

span < A, B, P> = Im C*B¢.

PROPOSITION 5.1. The following three conditions are equivalent:
(i) the relazed system (5.2) is controllable,

(i) < A, B, P> spans the whole space R",

(iil) CABQ has full rank.
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Proof. This result is surely well known since it is an obvious extension of Kalman’s
controllability theorem [21]. d

Unfortunately, the relaxation (or linearization) mechanism P +— spanP destroys
part of the information contained in the original model (5.1). For recovering the
information that is lost, we introduce the concept of “unilateral uncontrollable mode.”

DEFINITION 5.2. One says that A € R is an uncontrollable mode of (A, B) relative
to P if

(5.3) Im(A — ) + B(P) # R".

Such an uncontrollable mode X is declared unilateral if Im(A—AI)+B(P) has nonempty
interior; otherwise it is declared bilateral.

If the relaxed system (5.2) is controllable, then we should not worry about the
existence of uncontrollable modes of the bilateral type. In fact, one has the next
lemma.

LEMMA 5.3. Suppose that < A, B,P > spans R™. Then, (A, B) doesn’t have
bilateral uncontrollable modes relative to P.

Proof. This corresponds to a particular case of a more general result stated in
section 7, namely, Proposition 7.9. ]

That < A, B, P > spans R" doesn’t rule out, however, the existence of uncon-
trollable modes of the unilateral type. This is an important point that deserves to be
stressed.

THEOREM 5.4. Controllability of the cone-constrained linear model (5.1) is equiv-
alent to the combination of the following two conditions:

(i) < A,B,P> spans R",
(ii) (A, B) has no unilateral uncontrollable mode relative to P.

Proof. According to Brammer [5], controllability of (5.1) is equivalent to the
combination of (i) and
(5.4) { the matrix AT has no (real) eigenvalue with

' associated eigenvector in the cone [B(P)]*.

Since
[B(P)|" ={qeR"|BTqe P},

Brammer’s condition (5.4) is just another way of saying that (A, B) has no uncon-
trollable mode relative to P. Due to Lemma 5.3, bilateral uncontrollable modes can
be taken out of the discussion. Indeed, these modes are excluded by the property

). O

5.2. Divide and conquer. As shown in the above theorem, controllability of
a cone-constrained linear model is a concept that can be broken into two different
pieces. The first piece is a sort of generalized Kalman’s rank condition. It takes into
account the span of the cone P, but not the cone itself. This condition is purely
linear in the sense that it doesn’t recognize the “conic” part of P. The second piece
takes care of the possible gap between the cone P and its span. In line with this
observation, we split the set

Z(P) = {(A, B) € LR™™ R™) | the system (5.1) is uncontrollable}
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in two different components:

r—~rank (P

) (A,B) € L(R™™™ R™) | span < A, B, P > # R"},
’—unl(P)
(A

{
{(A, B) € L(R™™ R") | oWi(A, B) # 0}.

The notation o%i(A, B) refers, of course, to the set of all unilateral uncontrollable
modes of (A, B) relative to P. Since

(1]

(P) = =% (P) UE™(P),
the index of controllability

A, B)= inf A B) - D
pp(A.B)=  inf |[(4.B)-(C.D)|

for the cone-constrained model (5.1) can be computed by using the rule
pp(A, B) = min{ﬂ?nk(A’ B), um(A B)},

where the component indices p33"%(A, B) and pu(A, B) are defined in an obvious
manner.
The evaluation of p3"* is the “easy” part of the job. What we have to do is to
adjust Hu-Davison’s formula to the linearly constrained control system (5.2).
PRrOPOSITION 5.5. Let P be an r-dimensional closed convex cone in R™. Let
Q € LR",R™) be any orthonormal map such that span P = Im Q. Consider an
operator (A, B) € L(R"T™ R"™) such that < A, B, P> spans R"™. Then,

RW,  —~vIW
5.5 B"5(A, B) = inf . :
(5:5) Hp™ (4, B) = inf Wi%pusssv({ NIIW.,  RW. D

rank

with W, = [A — 21, BQ)].
Proof. By definition, p}3"% is the distance function to the set Z'#"%(P). Since

.U?nk (A, B) = HspanP (A, B),

it suffices to combine Theorem 4.1 and Proposition 3.2. 0

The evaluation of p%" falls beyond the context of Hu-Davison’s formula. We
no longer seem able to use arguments in the realm of standard linear algebra. The
number

5.6 uni(4 B) = inf A B)—(C,D
(5.6) ppiAB) = inf A B) = (D))

indicates how much we need to perturb the pair (A, B) if we wish to produce a
unilateral uncontrollable mode.

Before trying to compute this number, let us say a few additional words on the
set 2 (P). In the very definition of this set, we use implicitly the expression

P® = ph\lin(P).

We don’t know if there is already a name for P?®, so we call it the pseudo-dual cone
of P. Without loss of generality we may suppose that P is not a subspace. If P were
a subspace, then P® would be empty, and Z""(P) would be empty as well. Observe
that the cone P? is convex but not necessarily closed.
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LEMMA 5.6. Consider a closed convex cone K in some arbitrary Euclidean space.
If K is not a subspace, then one has cl[K\lin K] = K and also cl[K®] = K.

Proof. We prove only K C cl[K\linK], the reverse inclusion being trivial. Take
¢ € K. Suppose that ¢ € lin(K); otherwise we are done. Since K is not a subspace,
we can pick up some ¢* € K\linK and form

o =(1—a)c+ac® with «a€]0,1].
Since ¢ and ¢* are in K, so is the convex combination ¢,. The equality
cF=aleg—at(1-a)c

implies that ¢, doesn’t belong to lin(K'). Hence, ¢, € K\linK. The desired conclusion
is obtained by letting o — 0. O

LEMMA 5.7. Suppose that P is a closed convex cone but not a subspace. Then,

—uni -
(€, D) € Z(P) such that CTq = \¢ and DT¢q € P9.

Proof. The proof is not difficult, and therefore it is omitted. O

PROPOSITION 5.8. Suppose that P is a closed convexr cone but not a subspace.
Then, the index (5.6) admits the characterization

{ one can find A € R and a unit vector ¢

1/2
(5.7) u'(A,B) = inf [|ATq Aq|? + dist? [BTq,PJr]} .
\4\ 1
Proof. By using Lemma 5.7, one gets
pi(A, B) = inf inf A, B)— (C,D)|| = inf ¥ A
(4.B)= Wf ot MAB) - (CD) = | inf  Wap(q)

cTq=xq, DT qeP®
with
Yap(Aq) = inf 1(4, B) — (C, D)||.
(C,D)eL(R™T™ R™)
CTgq=xq, DTqeP®
A simple matter of computation shows that

AT 2T } H
LG Aq) = inf —
45(4) (C,D)eL(®R™™ R™) H [ } [ Bt

(CT—AI)q=0, DquPeB
X _ AT — )T
Y BT

where the last infimum is taken with respect to

= inf ,

X n n+m . X
[Y]EE(R,R ) such that {Y}qe[

The reduction lemma yields

. AT I 0
\I’A,B(Avq) = dist |:|: BT :l q, |: P@ :|:| )

0
pe |-

and therefore

. 1/2
uni . A 2 s g2 T D
up(A, B) = S\TEI% [\A q— Aq|” + dist*[B ¢, P ]} .
al=1

But, due to Lemma 5.6, one can change P® by PT. 1]
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6. Partial perturbations of cone-constrained linear models. Analogously
to our earlier discussion of partial perturbations, we might wish to consider perturbing
only the matrix A in measuring the distance to uncontrollability of the cone-contrained
linear model (5.1). The techniques of the previous section extend in a straightforward
manner. The nonnegative real number

dapp"(A, B) = 1A=C]

inf

CeL(R™,R")
o™ (C,B)#D
indicates how much one needs to perturb the first component of (A, B) in order to
produce a unilateral uncontrollable mode relative to P. A similar interpretation must
be given to the number

Opupi(A,B) = inf B-D|.

s (A, B) = | nf 1B D

op" (A,D)#0

In the next proposition we provide the reader with a recipe for computing these partial
indices.

PROPOSITION 6.1. Suppose that P is a closed conver cone but not a subspace.
Then,

(6.1) OAlE(A,B)= inf  |ATq—Aq]
A€ER,|g|=1
BT gepPt

and

(6.2) Ippsi(A,B) = inf  dist[BTq, PT].
XER,|q\=1
AT g=)q

Proof. Both formulas are obtained by employing a similar proof technique as in
Proposition 5.8. By way of example, let us write

6.3) Oau™(A,B)=  inf inf A—C| = inf W4,
(6.3) Oaup"(A,B) R . | | et A\ q)
CTq=xq, q€[B(P)]® q€[B(P)]®
with
U4\, q) = inf A-C| = inf X — (AT = AD)|| = |ATq - \q|.
A\ q) certh ) | [ xerth 2o l ( N =14%q— Aq|
CTq:)\q, Xq=0

The last equality is obtained, of course, by applying the reduction lemma. Notice
that due to Lemma 5.6 and a continuity argument, the last infimum in (6.3) can be
written with [B(P)]" instead of [B(P)]®. O

The partial indices 94 p33"% and Op ik are defined in an obvious manner:

rank :
A B) = spanp (A, B) = f A-C|,
OAUF™(AB) = Oaipur(AB) = _int 40|
< C,B,spanP>#R"
rank :
A, B) = 2p(A, B) = f B —D||.
O™ (A.B) = Opppnp(AB) = nf B D]

< A,D,spanP>#R"

The computation of these indices can be carried out with the help of the transfer
formulas established in Proposition 4.2.
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7. Controllability of convex processes. We can consider the control models
we have studied so far in a slightly different light, as controlling differential inclusions
of the form & € Ax 4+ K for convex cones K. In the model (5.1), for example,
K = BP. In this section we broaden this perspective, considering the controllability
of a differential inclusion

(7.1) i(t) € Fz(t))

whose right-hand side is a strict closed convex processes F : R* =R"™. That F is a
closed convex process simply means that

grF ={(s,v) e R" x R" | v € F(s)}

is a closed convex cone. Saying that F is strict is a short way of indicating that F is
nonempty-valued everywhere, that is to say, F(s) # @ for any s € R™.

DEFINITION 7.1. A strict convex process F : R™ S R™ is said to be controllable
if the corresponding reachable set

Reach(F) = {z(T) | € X solves (7.1) and z(0) = 0}

is the whole space R™.

7.1. Characterizing controllability. We know exactly what controllability of
F means in terms of the trajectories of its associated differential inclusion, but it
would be helpful to have at our disposal some simple algebraic criteria for checking this
property. This topic has been handled in a brilliant manner by Aubin, Frankowska
and Olech in their 1986 paper [3]. Their contribution admits, however, a certain
number of improvements. To put everything in the right perspective, let us start by
recalling two algebraic concepts for an arbitrary convex process. The first concept
emerges as an extension of the classical rank condition of Kalman.

DEFINITION 7.2. A convex process F : R® S R"™ is said to be reproducing if

(7.2) there is an integer k > 1 such that F*(0) spans R™,

where the kth power F* = Fo-..oF (k-fold) is understood as an iterated composition
in the multivalued sense.

We shall say some extra words on the reproducibility or rank condition (7.2) in a
moment. The second concept is an extension of Definition 5.2.

DEFINITION 7.3. The number A € R is called an uncontrollable mode of the
convex process F : R" 3 R™ if F — A is not surjective, that is, if Im[F — \I] # R™.
The set of uncontrollable modes of F is denoted by o(F).

These are the basic ingredients to state the following theorem.

THEOREM 7.4 (see Aubin, Frankowska, and Olech, [3]). Let F : R" =R" be a
strict closed convex process. Then,

F is controllable <= F is reproducing and has no uncontrollable modes.

We mention two ways of rendering this beautiful result even more attractive.
First, there is a simple way to characterize the reproducibility condition (7.2). The
proposition stated below seems to be new, so we prove it in detail. We rely on two
auxiliary lemmas.
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LEMMA 7.5. Consider a strict convex process F : R® =X R"™ and an integer k > 1.
If the spans of the cones F*~1(0) and F*(0) coincide, then so do the spans of the
cones F7(0) for exponents j =k — 1,k k+1,....

Proof. By induction, it suffices to prove the case j = k + 1. In this case, if the
result fails, there is a vector v in the cone F*+1(0) outside the span of the cone F¥(0).
Choose a vector s in F¥(0) with v € F(s) and a vector w in the relative interior of
the cone F¥~1(0). Since s lies in the span of the cone F*~1(0), the vector bw + s lies
in F571(0) for some real b > 0 sufficiently large. Since F is strict, there is a vector
z in F(w) (and hence in F*(0)). Since the graph of F is a convex cone, the vector
bz + v lies in F(bw + s), and hence in F¥(0), contradicting the fact that v lies outside
the span of F*(0). O

LEMMA 7.6. Suppose that F : R® =XR" is a strict convexr process. Then the
interiors of the cones F*(0) (for exponents k = n,n + 1,...) are either all empty or
all nonempty.

Proof. The spans of the cones F¥(0) (for exponents k = 1,2,...) are an increas-
ing sequence of linear subspaces. The previous result implies that equality of two
successive elements of the sequence entails constancy thereafter. Hence, by count-
ing dimension, the sequence is constant after at most n elements. The result now
follows, since a convex cone has nonempty interior if and only if it spans the whole
space. 0

Remark. One can construct an easy example showing that F"1(0) need not be
equal to F™(0). Consider, for instance, n = 2 and a convex process F : R? — R? of
the form F(s) = As + K, with

cos sinf 1
A_[—sinﬂ cosﬁ}7 K_R+[O]'

The angle # > 0 is chosen small enough. Since K is a ray and A is a rotation matrix,
the set

FE0) = K + A(K) 4 --- + AFY(K)

reduces to the convex cone generated by the vectors
1 cos((k —1)0)
{ 0 } ’ { sin((k — 1)6) }

This happens as long as (k—1)0 < 7, that is, k < 1+7/6. It is only after k > 14+7/6
that 7¥(0) = R? becomes constant. Observe that 1+ 7/ goes to infinity as § — 07,
so one can adjust this example to cover the case of an arbitrary power n.

PROPOSITION 7.7. A strict convexr process F : R" = R"™ is reproducing if and
only if F™(0) spans R™.

Proof. This follows from the last lemma. 1]

The second improvement in the presentation of Theorem 7.4 has to do with the
nature of uncontrollable modes. The elements of o(F) can be partioned into two
different categories. One says that A € o(F) is of the unilateral type if Im[F — A\I]

has nonempty interior; otherwise, it is declared of the bilateral type. In short, one
has a partition

o(F) = o™ (F) Ua™(F),

where the notation is self-explanatory.
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The different types of uncontrollability modes are perhaps better understood if
we characterize them in terms of the adjoint process of F'. Recall that the adjoint (or
transpose) of the convex process F : R® =R" is the convex process F* : R® = R"
defined by

grF* = {(q,p) € R x R" | (—p,q) € [grF]*},
that is,
(¢,p) €EgrF* = (p,s) < (q,v) V(s,v) € grF.

We assume that the reader is familiar with this transposition mechanism [2, 4, 29].
As observed already in Proposition 2.4 of [30], the convex cone Im[F — ] is related
to

(F*=A)7H0) = {g e R" | \g € F"(q)}
by means of the duality formula
(7.3) (F* = XI)71(0) = [Im(F — AI)]T.

As a consequence of (7.3), it is clear that an uncontrollable mode of F is exactly the
same thing as an eigenvalue of F*. In short,

(7.4) o(F) = A(F)
with
AF*)={NeR| g€ F*(q) for some q# 0}

denoting the (point) spectrum of F*. General information on point spectra of convex
processes can be found, for instance, in [1, 23, 24]. For bilateral uncontrollable modes,
one has the next lemma.
LEMMA 7.8. Consider a convex process F : R® 3 R™. For A € R, the following
three conditions are equivalent:
(i) A is a bilateral uncontrollable mode of F,
(ii) the conver cone (F* — XI)~1(0) contains a line,
(iii) there is a unit vector ¢ € R™ such that \g € F*(q) and —Aq € F*(—q).
Proof. The equivalence between (ii) and (iii) is straightforward. The equivalence
between (i) and (ii) is again a consequence of the duality formula (7.3). 0
Remark. A vector ¢ as in Lemma 7.8 (iii) is called a bilateral eigenvector of F*.
The concept of bilateral eigenvector is used by Gajardo and Seeger [13] in connection
with the asymptotic stability analysis of discrete-time evolution systems governed by
convex processes.
PROPOSITION 7.9. For a strict convexr process F : R™ = R™, one has the impli-
cation

P F)£D =  int[FF0)]=0 Vk>1.

In particular, if a strict convex process F : R" = R" is reproducing, then it has no
bilateral uncontrollable modes.
Proof. Take \ € o®(F). By Lemma 7.8, there is a unit vector ¢ € R™ such that

(7.5) Aq € F*(q), —Xq€ F*(—q).
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We claim that for every k € N, one has
(7.6) Mg e (F)*(a), —Aqe (F)(-q).

The proof is carried out by using an induction argument. The case k = 1 corresponds
o (7.5). Suppose that (7.6) is true for a given k, and let us examine the situation for
k + 1. One has

(F)*a) = FUFI Q)] = Ve F(2) D F* (W),
and similarly
(FH (=) = FUF) ()] = Useryr g F(2) D F(=A"q).
We now use the fact that F* is positively homogeneous. If \¥ > 0, then one can write
NF (q) € (F ) a), NF*(=q) € (F)" ().
If \¥ < 0, then one gets
N F (—q) € (F)Ha), —NF(g) € (F) ().
In either case, one obtains
NHlge (F)"Hg), —AFlg e (F) " (~g),

proving in this way our claim. In fact, we don’t use the full power of (7.6). We just
observe that

q € dom(F*)F N —dom(F*)*,
that is, dom(F*)* is a convex cone containing a line. By invoking the duality formula
[F*(0)]" = dom(F*)k

of Phat [28, Prop. 2.5], we conclude that F*(0) has empty interior. 0

In view of Propositions 7.7 and 7.9, the Aubin—Frankowska—Olech controllability
theorem can be reformulated in the following form.

COROLLARY 7.10. Suppose that F : R* =S R" is a strict closed convex process.
Then,

Fis controllable <= F™(0) spans R" and o"™(F) is empty

7.2. Checking reproducibility. Deviating momentarily from the main stream
of the discussion, we make some comments concerning the concept of reproducibility.

The relaxation mechanism (5.2) introduced in section 5.1 can be extended to the
framework of a differential inclusion whose right-hand side is a general convex process.

DEFINITION 7.11. The linear relazation of a convex process F : R" =R"™ is
defined as the multivalued operator F¢ : R™ = R™ whose graph is given by

grF rel — grF — grF.

Said in another way, the graph of F ¢ is the linear subspace spanned by the convex
cone grF.
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A more explicit formula for F is given by

(7.7) Fls)= |J Fls2)—F(s1) VseR™

By construction, the multivalued operator F™' is linear in the sense that
]—'rel(alsl + 0[282) = Ollfrel(sl) + agfrel(SQ)

Vsq, s2 € domF™ and nonzero aq,as € R. (That a1,as € R are nonzero scalars is
of importance and should not be neglected.) General information on the theory of
linear multivalued operators can be found in the book by Cross [7].

We declare the differential inclusion

(7.8) i(t) € Frel(x(t))

as being the relaxed version of the control model (7.1). As we shall see in the next
theorem, reproducibility of F is equivalent to controllability of (7.8). First, we state
the next lemma.
LEMMA 7.12. For a strict closed convex process F : R® =X R"™, one has
(i) .7:(82) — .7:(81) - ]‘-(82 — 51) — .7:(0) Vs1,s89 € R™,
(ii) Frel(s) C F(s) — F(0) VseR",
(iii) F(s) C Frel(s) Vs e R™,
(iv) (Fre)k(0) = spanF*(0) Vk e N.
Proof. For proving part (i), take s1,s2 € R™ and v € F(sq) — F(s1). Write

v=wvy—v; with v € F(s1),v2 € F(s2).

By strictness of F, we can find some element w in F(—s;1). Since the graph of F is a
convex cone, it follows that

vy +w € F(0), vy+wée€ F(sq3—51).
Hence,
v=(va +w)— (v +w) € F(s2—s1)—F(0).

Part (ii) follows immediately from (i) and formula (7.7). Part (iii) is trivial because
grF C grFrl. The proof of (iv) is more subtle and is based on an induction argument.
For k = 1, the result is true because the equality

Fr(0) = spanF(0)

is obtained by combining (ii) and (iii). Suppose the announced formula is true for a
given k. For k + 1, one gets

(frel)k:Jrl(()) — U frel(v) = U frEI(?)) = U frd(’UQ — Ul)

ve(Frel)k(0) veEspanFk (0) v1,v2€FE(0)
= U {FU-7en} ¢ U {1Fe) - FO) - 1F@) - FO)}
v1,v2€F*(0) v1,v2E€Fk(0)

Therefore,

(FHEEH0) € [F(FF(0) = F(0)] = [F(FF(0) = F(0)] = spanF**1(0) + spanF (0).
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The subspace spanF(0) can be dropped from the last sum because it is contained in
spanF**1(0). We have proved in this way the inclusion (F**")*+1(0) C spanF*+1(0).
The reverse inclusion is trivial because the convex cone F*+1(0) is smaller than the
linear space (Fr)k*+1(0). O

LEMMA 7.13. Let F : R*=R"™ be a strict closed convex process. Then, F'e!
admits the representation

(7.9) Fls)=ATs+ 57  VseR",
where ST = spanF(0), and AT € L(R",R") is defined by
(7.10) AT s = 77 [Frel(s))]

with ™ : R™ — R™ denoting the orthogonal projection onto [spanF(0)]+.
Proof. Tt must be observed that m [F*!(s)] is indeed a singleton. To see this,
take y1,y2 € 77 [F*(s)] and write

yi =77 (v1), yo =77 (va) with vi,ve € F*(s).

Hence,

y1 —y2 =7 (v1) — 77 (v2) = 77 (v1 — v2) =0,

the last equality being due to the fact that
v] — vy € Fo(s) — Frl(s) = F™(0) = spanF(0).

Checking the linearity of the single-valued operator A7 is essentially a matter of
exploiting the linearity of the multivalued operator F™!. The details are omitted.
Finally, we check the representation formula (7.9). Take s € R™ and y € A7s + S7.
Thus,

y=q +77(v) with ¢, € 87, v e F*l(s).
Since gz = v — 77 (v) € S7, it follows that
y=q —q+veST+ Fels) = F0) + Fl(s) C Frl(s).
Conversely, take y € F*!(s). Since y — 77 (y) € S7, it follows that
y=m"(y)+y—-n"(y) € ATs+S*. O

Remark. The operator A7 used to represent F'¢' is not unique. In fact, one has
Frel() = A(-) + S7 for any A € L(R™,R™) with Im(A — A7) € S7. Such A is called
a linear selector of ™. We declare A7 to be the standard linear selector of F*e!.

In view of Lemma 7.13, the relaxed version of the differential inclusion (7.1) can
be written in the form

(7.11) { Z((tt)) Z 1;]]-:—’33(15) - U(t)’

a model that is well understood by now. Such linearly constrained control problem
can also be written in the unconstrained form

(t) = AT z(t) + Qu(t),
712 [ &)~ 470+ Quly
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where r is the dimension of S¥, and Q € L(R",R") is any orthonormal map such
that ImQ = S7.
THEOREM 7.14. For a strict closed convex process F : R™ =X R"™, the following
five conditions are equivalent:
(i) F is reproducing,
(i) Fr! is reproducing,
(iii) the system (7.11) is controllable,
(iv) (A7,Q) is controllable for some Q € O(r,n) such that Im Q = S,
(v) (AF7 Q) is controllable for every Q € O(r,n) such that Im Q = S7.
Proof. The equivalence between (i) and (ii) is a consequence of Lemma 7.12(iv).
From the controllability theory of linear systems, we know that the conditions (iii),
(iv), and (v) are all equivalent to (ii). d

8. Additive versus hybrid perturbations. Equipped with the characteriza-
tions of controllability of process differential inclusions we explored in the previous
section, we can now return to our central topic of measuring the degree of control-
lability. Robustness of controllability for a system like (7.1) is a topic that has been
studied by Naselli-Ricceri [26], Tuan [33], and Lavilledieu and Seeger [24]. Here we
go beyond the qualitative analysis carried out by these authors and focus attention
on the quantitative aspect. We want to measure how much we need to perturb the
system (7.1) in order to destroy its controllability.

8.1. Additive perturbations. The simplest way to perturb the differential
inclusion (7.1) is to add a linear map L € L(R™,R™) to the reference or nominal
operator F. The perturbed system

(8.1) z(t) € (F+ L)(z(t))

may no longer be controllable if the perturbation L is too severe. The index
.2 a = inf L

(8.2) fradd (F) Lea}ﬁ",R") L]l

F+L uncontrollable

speaks by itself and doesn’t need further explanation. In line with the “divide and
conquer” strategy adopted in this work, we write

pradd (F) = min{ i3 (F), pag (F)},
where

8.3 S (F) = inf L
(53) e C N T 1
F+L irreproducing

measures the distance to irreproducibility, and
8.4 uni (Y — inf L
(8.4) Madd( ) Lel(R" ™) Ll
0“"‘(.7-'+L);£(D

indicates how much we need to perturb F in order to produce a unilateral uncontrol-
lable mode.

In the proof of the theorem stated below, we use the notation F© to indicate the
pseudo-adjoint of the convex process F : R® =2 R". By definition, F© : R® 2 R" is
the convex process given by grF® = grZ*\lin[grF*], or, more explicitly,

FOq) = F(\ = F*(—q) VYqeR"™



DISTANCE TO UNCONTROLLABILITY 45

THEOREM 8.1. Suppose that F : R™ = R"™ is a strict closed convex process. Then,

i inf \er dist[Ag, F*(q)] if grF is not a subspace,
(8.5) fada(F) = { lal=1

00 otherwise.
On the other hand,
(8.6) L (F) = 0ap(A7, Q)

with Q@ € O(r,n) such that Im Q = spanF(0) and AF denoting the standard linear
selector of Frel.

Proof. The formula (8.5) is based on the fact that ¢""(F + L) # () if and only if
there exist a scalar A € R and a unit vector ¢ € R™ such that

{ Mg € F*(q) + L7q,
—A\q & F*(—q) — L7q.

The above condition can be written in the more compact form LTq — A\q € —F®(q).
Hence,
W(F) = if nf L

AER LEL(R™,R™)
lal=1 LT q—xqe—-FO (q)

By applying the reduction lemma, one obtains

uni . fe ®
(8.7) Pada(F) = inf dist[Ag, 7 (q)].

lg|=1

Both terms in (8.7) are equal to oo if grF is a subspace. Suppose then that grF is
not a subspace. Since F is a strict closed convex process, it follows that F*(0) = {0}.
Hence,

F(q) + F(=q) < {0}.
From this relation, one can see that
domF® = domF*\lin[domF*] and F(q) = F*(q) Vg € domF®.
It has to be shown that, for arbitrary A € R and unit vector ¢ € domF*, one has
dist[Ag, F*(q)] > pada (F)-

To do this, we take into account (8.7) and the following two facts. First, due to
Lemma 5.6, every unit vector in domF™* can be obtained as limit of a sequence of unit
vectors taken from domZ*\lin[domF*]. Second, since F is strict, 7* maps bounded
sets to bounded sets and F* is single-valued over lin[domF™*] (cf. Corollary 2.5.8 in
[2]). As far as (8.6) is concerned, one follows a similar proof technique as in the more
general situation discussed in Theorem 8.3. ]

8.2. Hybrid perturbations. Perturbing a differential inclusion by adding a
linear map to the right-hand side is not the most general perturbational scheme that
one may consider. In fact, a perturbational scheme of the additive type is poorly
suited to deal with a large number of important situations occurring in practice. To
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see this, just think of the particular case of the unconstrained linear control problem
(1.1). This model can be represented in terms of the convex process Fa p : R* =R"
given by

‘7:,473(3) = As + ImB.

By adding a linear map L € L(R",R") to the convex process F4 p one recovers a
perturbed system

#(t) = (A + L)a(t) + Bu(t)

for which the B component remains unaffected. A more sophisticated operation must
be carried out on F4 p if one wishes to incorporate perturbations in the B component
as well.

The concept of hybrid perturbation is based on the simultaneous use of two linear
maps, say, M € L(R",R™) and L € L(R"™,R"), the first acting in an multiplicative
way and the second in a additive way. The new convex process

s€R"— [MoF +L|(s) = M(F(s))+ Ls

is viewed as a perturbed version of F. Of course, perturbation doesn’t occur if one
takes (M, L) = (1,0). All this is for saying that

. = inf M,L)— (I
(8.8) finyb (F) arsemtn guy N1 L) = (T, 0)]
MoF+L uncontrollable
is a reasonable candidate for measuring the degree of controllability of F. Observe,
incidentally, that hybrid perturbations preserve the strictness of F.
We follow once more our old habit of thought and decompose (8.8) in the form

Py (F) = min{pih(F), iy (F)}

with g2 (F) and pp (F) being defined in an obvious way.
THEOREM 8.2. Suppose that F : R® =X R" is a strict closed convex process. Then,
one has

inf xeg, dist[(g, Aq), grF*] if grF is not a subspace,

(89) i (F) = { lal=1 .
00 otherwise.

Proof. We consider only the case when grF is not a subspace, the other case
being trivial. For any M, L € L(R™,R"), one has (M o F + L)* = F*o MT + LT.
Hence, 0" (M o F + L) # () if and only if there exist a scalar A € R and a unit vector
q € R™ such that

Ag € F*(M"q) + L"q,
—Aq ¢ F*(~M"q) — L"q.
This can be written in the form

(LTq — g, MTq) € (grF)®

with (grF)® denoting the pseudo-dual of the convex cone grF. Hence,

uni — 3 1 ;
A = e NarD-won= e[ ] -[7]]

lal=1 (LT q—xq,MT q)e(arF)® lal=
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where the last infimum is taken with respect to

X n n+m X )‘q D
{Y}EE(R,R ) such that [Y]q{o}e(grf).

The reduction lemma yields

:u‘ﬁ;/lll)(f> - ,\lgﬂg, dlSt[(fA(L q), (grf)@] - )}gﬂg, dlSt[(f)‘Qa Q)v (grf)JrL

[g|=1 lq|=1

from which one gets the announced result. 0
THEOREM 8.3. Suppose that F : R" =X R" is a strict closed convez process. Then,

1 rank 7y — inf M,L)— (I
(8.10) Py (F) M’Leg%w)w) (M, L) - (I,0)]
(M A+L,MQ) uncontrollable

with Q € O(r,n) such that Im Q = spanF(0) and A denoting any linear selector of
]:rel'
Proof. One can show that for any M, L € L(R™,R"™), one has the identity
grf(MoF + L) —gr(MoF+L)=gr(MoF* 4 1),

and therefore (M o F + L)**! = M o F*! + L. By combining this fact and Theorem
7.14, one sees that

M o F + L is irreproducing <= (M o F 4 L)™' is irreproducing
<= M o F*' + L is irreproducing
< (M A+ L, MQ) is uncontrollable.

This proves, of course, the announced formula. a
We end this section by showing how to evaluate the hybrid indices Phyb and ufi}})k

in the particular case of a convex process F fy 5 : R" = R™ given by
.7:573(8) = As + B(P).

This choice may seem very peculiar, but, in fact, it is one of the most prominent
examples in the general theory of convex processes. Observe that the cone-constrained
model (5.1) can be written in the form of a differential inclusion whose right-hand
side is F 57 g For the sake of completeness, we mention that the class

Hp={Fip| (A B)e LR R")}
is stable with respect to hybrid perturbations. Indeed, one can write the identity
MoFYp+L=Ftp,
where the pairs (4, B) and (C, D) are related through the transformation formulas
C=MA+L, D= MB.
Observe that the perturbation (M, L) that brings (A, B) to (C, D) is given by

(8.11) M =DB"B)"'BT, L=C-DB"B)'BTA.
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For writing (8.11) we are implicitly assuming that the transpose of B € L(R™,R")

is surjective because otherwise BT B is not invertible. In the context of our cone-

constrained control problem (5.1), surjectivity of BT can be assumed without loss of

generality. It is interesting to note that seemingly more general types of perturbations

like pointwise or graphical addition of convex processes do not even allow to recover
the class H, introduced above.

COROLLARY 8.4. Let P C R™ be a closed convex cone but not a subspace. Then,

. 1/2

(8.12) pi (FR ) = inf inf [|ATh — A2+ |h - qﬂ .

AER BThepPt
lal=1

Proof. An easy calculation shows that
gr(Fip)* ={(h,p) | B'h € P*, p=ATh}.
It suffices now to apply the general formula (8.9). d
We mention in passing that (8.12) can also be obtained by writing

pim (FA B) = (M, L) — (L,0)|

inf
M,LeL(R™ R™)
" (MoFL p+L) #0

L inf (M, L) — (L,0)]
M,LEL(R™ R™)\ER, |q|=1
ATMT g+LT qg=Xq, BTMT qe P®

and then applying the reduction lemma. This alternative method, however, requires
some additional simplificatory work.

COROLLARY 8.5. Let (A,B) € L(R"™™ R™) and P C R™ be a closed convex
cone. Take any Q € O(r,n) such that Im Q = span B(P). Then,

8.13 rank (gl ) — inf M,L)— (I,0)|.
(5.13) PR =t 0L = (L0
(MA+L,MQ) uncontrollable
Proof. Tt suffices to apply Theorem 8.3, keeping in mind that the relaxed version
of F} p is given by [F} 5]"'(-) = A(-) + spanB(P). 0

9. By way of conclusion. This paper is about measuring the distance to uncon-
trollability in cone-constrained linear control problems or, more generally, in control
problems described by convex processes. We have adopted the strategy of splitting
the analysis into two separate components. One part of our study consists in mea-
suring the distance to irreproducibility. The term reproducibility refers to a suitable
generalization of Kalman’s rank condition. The second part of our study consists in
measuring the distance to unilateral modality (i.e., existence of unilateral uncontrol-
lable modes). It is in this part of our study that the conic aspect of the data (convex
cones, convex processes, etc.) comes into the picture. Bilateral uncontrollable modes
belong to the realm of classical linear algebra and therefore they are left aside (in
fact, they are implicitly incorporated in the analysis of reproducibility).

The formulas for measuring the distance to unilateral modality were obtained
by exploiting the reduction lemma. There is a different approach which consists in
exploiting the concept of e-eigenvalue for multivalued operators. Following Gajardo
and Seeger [12], we denote by

A(F*)={x e R | 3(q,p) € grF*with ¢ # 0, such that |p — Ag| < €|q|}
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the set of e-eigenvalues of F*. For practical purposes, it is important to estimate the
smallest value of ¢ € Ry that guarantees the nonvacuity of A.(F*). This smallest
value is called the spectral threshold of F*. As established in [12], the equality

(9.1) inf{e € Ry [ A(F7) # 0} = inf dist[\g, 7~ (q)]

lg|=1

holds, in particular, when F is a strict closed convex process. Formula (9.1) gives us
an alternative interpretation of the index pl%}(F) when grF is not a subspace (cf.
Theorem 8.1).

Remark. When grF is not a subspace, both expressions in (9.1) serve not only to
measure the distance to unilateral modality but also to modality in general (i.e., exis-
tence of uncontrollable modes without specification of their nature). This observation

is quite subtle because, in general, the sets o""(F) and o(F) don’t coincide.

uni

As far as the hybrid index Py (F) is concerned, we see now appearing an expres-
sion of the form

(9.2) Ur(N) = inf dist[(q, A\q), grF7]

lg|=1

which has to be minimized with respect to A € R. The function V- is used by
Seeger [31] in connection with the upper stabilization of the point-spectral set-valued
mapping A. Observe that in a finite dimensional setting, one has

AF) = {A R [Tp()) =0}

In an infinite dimensional setting, the above equality is no longer true. As shown in
[31], the roots of ¥z« produce a set which may be much larger than A(F*) (one gets
the so-called approximate or stabilized spectrum of F*). This observation is just to
warn the reader that some of our results (for instance, Theorem 8.2) do not extend
to an infinite dimensional setting, unless important modifications are incorporated.
Infinite dimensionality introduces various complications that are not addressed in the
present work.
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